精英家教網 > 初中數學 > 題目詳情

【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,DAC中點,直線OD與⊙O相交于E,F兩點,P是⊙O外一點,P在直線OD上,連接PA,PC,AF,且滿足∠PCA=ABC

1)求證:PA是⊙O的切線;

2)證明:;

3)若BC=8,tanAFP=,求DE的長.

【答案】1)見解析;(2)見解析;(3DE=

【解析】

(1)先判斷出PA=PC,得出∠PAC=∠PCA,再判斷出∠ACB=90°,得出∠CAB+∠CBA=90°,再判斷出∠PCA+∠CAB=90°,得出∠CAB+∠PAC=90°,即可得出結論;
(2)先判斷出Rt△AOD∽Rt△POA,得出OA2=OPOD,進而得出

,,即可得出結論;
(3)在Rt△ADF中,設AD=a,得出DF=3a.,AO=OF=3a-4,最后用勾股定理得出OD2+AD2=AO2,即可得出結論.

1)證明∵D是弦AC中點,∴ODAC,∴PDAC的中垂線,∴PA=PC,∴∠PAC=∠PCA

AB是⊙O的直徑,∴∠ACB=90°,∴∠CAB+∠CBA=90°

又∵∠PCA=∠ABC,∴∠PCA+∠CAB=90°,∴∠CAB+∠PAC=90°,即ABPA,∴PA是⊙O的切線;

2)證明:由(1)知∠ODA=∠OAP=90°,

∴Rt△AOD∽Rt△POA,∴,∴

,∴,即

3)解:在Rt△ADF中,設AD=a,則DF=3a,AO=OF=3a-4

,即,解得,∴DE=OE-OD=3a-8=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在菱形ABCD中,按以下步驟作圖:

分別以點C和點D為圓心,大于的同樣的長為半徑作弧,兩弧交于M,N兩點;

作直線MN,交CD于點E,連接BE

若直線MN恰好經過點A,則下列說法錯誤的是(  )

A.ABC60°

B.

C.AB4,則BE

D.tanCBE

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在讀書月活動中,學校準備購買一批課外讀物,為使課外讀物滿足同學們的需求,學校就我最喜愛的課外讀物從文學、藝術、科普和其他四個類別進行了抽樣調查(每位同學只選一類),如圖是根據調查結果繪制的兩幅不完整的統計圖.

請你根據統計圖提供的信息,解答下列問題:

1)本次調查中,一共調查了_____名同學;

2)條形統計圖中,m_____n_______;

3)扇形統計圖中,藝術類讀物所在扇形的圓心角是______度;

4)學校計劃購買課外讀物5000冊,請根據樣本數據,估計學校購買其他類讀物多少冊比較合理?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形.的頂點均在格點上,建立平面直角坐標系后,點的坐標為,點的坐標為

1)先將向右平移5個單位,再向下平移1個單位后得到.試在圖中畫出圖形,并寫出的坐標;

2)將繞點順時針旋轉后得到,試在圖中畫出圖形.并計算在該旋轉過程中掃過部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】14分)如圖,已知拋物線)與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C,且OC=OB.

(1)求此拋物線的解析式;

(2)若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點E的坐標;

(3)點P在拋物線的對稱軸上,若線段PA繞點P逆時針旋轉90°后,點A的對應點A′恰好也落在此拋物線上,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,五邊形ABCDE中,∠A140°,∠B120°,∠E90°,CPDP分別是∠BCD、∠EDC的外角平分線,且相交于點P,則∠CPD__________°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖 1,在平面直角坐標系中,已知拋物線 y=ax2+bx5 x 軸交于 A(﹣10),B5, 0)兩點,與 y 軸交于點 C

1)求拋物線的函數表達式;

2)若點 D y 軸上的一點,且以 B,C,D 為頂點的三角形與ABC 相似,求點 D 的坐標;

3)如圖 2CEx 軸與拋物線相交于點 E,點 H 是直線 CE 下方拋物線上的動點,過點 H且與 y 軸平行的直線與 BCCE 分別相交于點 F,G,試探究當點 H 運動到何處時,四邊形CHEF 的面積最大,求點 H 的坐標及最大面積;

4)若點 K 為拋物線的頂點,點 M4m)是該拋物線上的一點,在 x 軸,y 軸上分別找點 P,Q,使四邊形 PQKM 的周長最小,求出點 PQ 的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】觀察下列等式:,,將以上三個等式兩邊分別相加得:

1)觀察發(fā)現

_________;

__________

2)初步應用

利用(1)的結論,解決下列問題:

拆成兩個分子為1的正的真分數之差,即__________

拆成兩個分子為1的正的真分數之和,即__________

3)深入探究

定義“◆”是一種新的運算,若,,,則計算的結果是_________.

4)拓展延伸

第一次用一條直徑將圓周分成兩個半圓(如圖),在每個分點標上質數,記2個數的和為,第二次將兩個半圓都分成圓,在新產生的分點標相鄰的已標的兩個數的和的,記4個數的和為;第三次將四個圓分成圓,在新產生的分點標相鄰的已標的兩個數的和的,記8個數的和為;第四次將八個圓分成圓,在新產生的分點標相鄰的已標的兩個數的和的,記16個數的和為;……如此進行了次.

_________(用含、的代數式表示);

,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知三角形的三邊分別為6cm、8cm、10cm,則這個三角形內切圓的半徑是________

查看答案和解析>>

同步練習冊答案