如圖,一次函數(shù)y=x-2的圖象分別交x軸、y軸于A、B,P為AB上一點(diǎn)且PC為△AOB的中位線,PC的延長線交反比例函數(shù)(k>0)的圖象于Q,S△OQC=,則k的值和Q點(diǎn)的坐標(biāo)分別為k=    ,Q   
【答案】分析:首先根據(jù)y=x-2可以求出A、B兩點(diǎn)坐標(biāo),接著求出OA長,由PC為△AOB的中位線可以推出OC=OA=2,又S△OQC=,由此可以求出CQ=,然后即可求出Q的坐標(biāo),再代入反比例函數(shù)的解析式即可求出k.
解答:解:∵y=x-2分別交x軸、y軸于A、B兩點(diǎn)
∴A(4,0),B(0,-2)
∵PC為△AOB的中位線
∴OC=OA=2
又S△OQC=
∴CQ=,∴Q(2,
根據(jù)k=2×
即得k=3.
故填空答案:k=3,Q(2,).
點(diǎn)評:此題難度較大,考查了反比例函數(shù)的意義、中位線定理及三角形面積公式,綜合性比較強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=
m
x
的圖象交于點(diǎn)P,點(diǎn)P在第一象限.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當(dāng)x>0時,一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,一次函數(shù)y1=-x-1與反比例函數(shù)y2=-
2
x
圖象相交于點(diǎn)A(-2,1)、B(1,-2),則使y1>y2的x的取值范圍是( 。
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過點(diǎn)A.當(dāng)y<3時,x的取值范圍是
x>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都)如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2=
kx
(k為常數(shù),且k≠0)的圖象都經(jīng)過點(diǎn)
A(m,2)
(1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖象直接比較:當(dāng)x>0時,y1和y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)y=x+3的圖象與x軸、y軸分別交于點(diǎn)A、點(diǎn)B,與反比例函數(shù)y=
4x
(x>0)
的圖象交于點(diǎn)C,CD⊥x軸于點(diǎn)D,求四邊形OBCD的面積.

查看答案和解析>>

同步練習(xí)冊答案