已知:如圖,在平面直角坐標(biāo)系中,拋物線過點(diǎn)A(6,0)和點(diǎn)B(3,).
(1)求拋物線的解析式;
(2)將拋物線沿x軸翻折得拋物線,求拋物線的解析式;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)M,使與相似?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,說明理由.
(1) ;(2);(3),,.
解析試題分析:(1)把A、B兩點(diǎn)坐標(biāo)代入y1=ax2+bx,求得a、b的值,從而確定y1的解析式;
(2)將拋物線沿x軸翻折后,仍過點(diǎn)O(0,0),A(6,0),還過點(diǎn)B關(guān)于x軸的對稱點(diǎn).從而可求y2的解析式;
(3)過點(diǎn)B作BC⊥x軸于點(diǎn)C,易證是頂角為120º的等腰三角形.分兩種情況討論:①當(dāng)點(diǎn)M在x軸下方時(shí),就是,此時(shí)點(diǎn)M的坐標(biāo)為.②當(dāng)點(diǎn)M在x軸上方時(shí),此時(shí)點(diǎn)M的坐標(biāo)為(9,)、.
試題解析:(1)依題意,得 解得
∴拋物線的解析式為
(2)將拋物線沿x軸翻折后,仍過點(diǎn)O(0,0),A(6,0),還過點(diǎn)B關(guān)于x軸的對稱點(diǎn).
設(shè)拋物線的解析式為,
∴ 解得
∴拋物線的解析式為.
(3)過點(diǎn)B作BC⊥x軸于點(diǎn)C,
則有.
∴,.
∵OC=3,OA=6,
∴AC=3.
∴,.
∴OB=AB.
即是頂角為120º的等腰三角形.
分兩種情況:
①當(dāng)點(diǎn)M在x軸下方時(shí),就是,此時(shí)點(diǎn)M的坐標(biāo)為.
②當(dāng)點(diǎn)M在x軸上方時(shí),假設(shè),則有AM=OA=6,.
過點(diǎn)M作MD⊥x軸于點(diǎn)D,則.
∴,. ∴OD=9.
而(9,)滿足關(guān)系式,
即點(diǎn)M在拋物線上.
根據(jù)對稱性可知,點(diǎn)也滿足條件.
綜上所述,點(diǎn)M的坐標(biāo)為,,.
考點(diǎn):二次函數(shù)綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
在直角梯形中, , 高(如圖1). 動點(diǎn)同時(shí)從點(diǎn)出發(fā), 點(diǎn)沿運(yùn)動到點(diǎn)停止, 點(diǎn)沿運(yùn)動到點(diǎn)停止,兩點(diǎn)運(yùn)動時(shí)的速度都是1cm/s,而當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),點(diǎn)正好到達(dá)點(diǎn). 設(shè)同時(shí)從點(diǎn)出發(fā),經(jīng)過的時(shí)間為(s)時(shí), 的面積為 (如圖2). 分別以為橫、縱坐標(biāo)建立直角坐標(biāo)系, 已知點(diǎn)在邊上從到運(yùn)動時(shí), 與的函數(shù)圖象是圖3中的線段.
(圖1) (圖2) (圖3)
(1)分別求出梯形中的長度;
(2)分別寫出點(diǎn)在邊上和邊上運(yùn)動時(shí), 與的函數(shù)關(guān)系式(注明自變量的取值范圍), 并在圖3中補(bǔ)全整個(gè)運(yùn)動中關(guān)于的函數(shù)關(guān)系的大致圖象.
(3)問:是否存在這樣的t,使PQ將梯形ABCD的面積恰好分成1:6的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知直線y=kx-3與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)C,拋物線經(jīng)過點(diǎn)A和點(diǎn)C,動點(diǎn)P在x軸上以每秒1個(gè)長度單位的速度由拋物線與x軸的另一個(gè)交點(diǎn)B向點(diǎn)A運(yùn)動,點(diǎn)Q由點(diǎn)C沿線段CA向點(diǎn)A運(yùn)動且速度是點(diǎn)P運(yùn)動速度的2倍.
(1)求此拋物線的解析式和直線的解析式;
(2)如果點(diǎn)P和點(diǎn)Q同時(shí)出發(fā),運(yùn)動時(shí)間為t(秒),試問當(dāng)t為何值時(shí),以A、P、Q為頂點(diǎn)的三角形與△AOC相似;
(3)在直線CA上方的拋物線上是否存在一點(diǎn)D,使得△ACD的面積最大.若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn).
(1)求△AOB的外接圓的面積;
(2)若動點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位沿射線AC方向運(yùn)動;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),以每秒0.5個(gè)單位沿射線BA方向運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)C處時(shí),兩點(diǎn)同時(shí)停止運(yùn)動.問當(dāng)t為何值時(shí),以A、P、Q為頂點(diǎn)的三角形與△OAB相似?
(3)若M為線段AB上一個(gè)動點(diǎn),過點(diǎn)M作MN平行于y軸交拋物線于點(diǎn)N.
問:是否存在這樣的點(diǎn)M,使得四邊形OMNB恰為平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,有一塊鐵片下腳料,其外輪廓中的曲線是拋物線的一部分,要裁出一個(gè)等邊三角形,使其一個(gè)頂點(diǎn)與拋物線的頂點(diǎn)重合,另外兩個(gè)頂點(diǎn)在拋物線上,求這個(gè)等邊三角形的邊長(結(jié)果精確到,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:拋物線y=ax2+bx+c(a>0)的圖象經(jīng)過點(diǎn)B(12,0)和C(0,-6),對稱軸為x=2.
(1)求該拋物線的解析式;
(2)點(diǎn)D在線段AB上且AD=AC,若動點(diǎn)P從A出發(fā)沿線段AB以每秒1個(gè)單位長度的速度勻速運(yùn)動,同時(shí)另一動點(diǎn)Q以某一速度從C出發(fā)沿線段CB勻速運(yùn)動,問是否存在某一時(shí)刻,使線段PQ被直線CD垂直平分?若存在,請求出此時(shí)的時(shí)間t(秒)和點(diǎn)Q的運(yùn)動速度;若不存在,請說明理由;
(3)在(2)的結(jié)論下,直線x=1上是否存在點(diǎn)M,使△MPQ為等腰三角形?若存在,請求出所有點(diǎn)M的坐標(biāo);若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù).
(1)求拋物線頂點(diǎn)M的坐標(biāo);
(2)設(shè)拋物線與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),求A,B,C的坐標(biāo)(點(diǎn)A在點(diǎn)B的左側(cè)),并畫出函數(shù)圖象的大致示意圖;
(3)根據(jù)圖象,求不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
許多橋梁都采用拋物線型設(shè)計(jì),小明將他家鄉(xiāng)的彩虹橋按比例縮小后,繪成如下的示意圖,圖中的三條拋物線分別表示橋上的三條鋼梁,x軸表示橋面,y軸經(jīng)過中間拋物線的最高點(diǎn),左右兩條拋物線關(guān)于y軸對稱.經(jīng)過測算,中間拋物線的解析式為:y=-x2+10,并且BD=CD.
(1)求鋼梁最高點(diǎn)離橋面的高度OE的長;
(2)求橋上三條鋼梁的總跨度AB的長;
(3)若拉桿DE∥拉桿BN,求右側(cè)拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線y=3x和y=2x分別與直線x=2相交于點(diǎn)A、B,將拋物線y=x2沿線段OB移動,使其頂點(diǎn)始終在線段OB上,拋物線與直線x=2相交于點(diǎn)C,設(shè)△AOC的面積為S,求S的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com