精英家教網 > 初中數學 > 題目詳情
如圖,已知直線y=x與拋物線y=x2交于A、B兩點.

(1)求交點A、B的坐標;
(2)記一次函數y=x的函數值為y1,二次函數y=x2的函數值為y2.若y1>y2,求x的取值范圍.
(1) A(0,0),B(2,2);(2) 0<x<2.

試題分析:(1)聯立兩函數解析式求解即可得到點A、B的坐標;
(2)根據函數圖象寫出直線在拋物線上方部分的x的取值范圍即可.
試題解析: (1)∵直線y=x與拋物線y=x2交于A、B兩點,
∴x=x2解得,x1=0,x2=2,
當x1=0時,y1=0,x2=2時,y2=2
∴A(0,0),B(2,2);
(2)由(1)知,A(0,0),B(2,2).
∵一次函數y=x的函數值為y1,二次函數y=x2的函數值為y2
∴當y1>y2時,根據圖象可知x的取值范圍是:0<x<2
考點: 1.二次函數與不等式(組);2.二次函數的性質.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:填空題

如圖,以扇形OAB的頂點O為原點,半徑OB所在的直線為軸,建立平面直角坐標系,點B的坐標為(2,0),若拋物線與扇形OAB的邊界總有兩個公共點,則實數的取值范圍是                  .

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,二次函數的圖象與x軸交于A、B兩點, A點在原點的左側,B點的坐標為(),與y軸交于C()點,點P是直線BC下方的拋物線上一動點.

(1)求這個二次函數的表達式.
(2)連結PO、PC,并把△POC沿CO翻折,得到四邊形POP’C,那么是否存在點P,使四邊形POP’C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
(3)當點P運動到什么位置時,四邊形 ABPC的面積最大并求出此時P點的坐標和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某公司生產的一種健身產品在市場上受到普遍歡迎,每年可在國內、國外市場上全部售完,該公司的年產量為6千件,若在國內市場銷售,平均每件產品的利潤y1(元)與國內銷售數量x(千件)的關系為:y1=若在國外銷售,平均每件產品的利潤y2(元)與國外的銷售數量t(千件)的關系為: y2=
(1)用x的代數式表示t,則t=__________;當0<x≤3時,y2與x的函數關系式為:y2=__________________;當3≤x<________時,y2=100;
(2)當3≤x<6時,求每年該公司銷售這種健身產品的總利潤w(千元)與國內的銷售數量x(千件)的函數關系式,并求此時的最大利潤.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:拋物線經過A(,0)、B(5,0)兩點,頂點為P.
求:(1)求b,c的值;
(2)求△ABP的面積;
(3)若點C(,)和點D(,)在該拋物線上,則當時,
請寫出的大小關系.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某個體戶春節(jié)前代理銷售某種品牌的酒,已知進價為每件40元,生產廠家要求銷售價不少于40元,且不大于70元,市場調查發(fā)現:若每件以50元銷售,平均每天可銷售90件,價格每降低1元,平均每天多銷售3件,價格每升高1元,平均每天少銷售3件.
(1)寫出平均每天銷售量y(件)與每件銷售價x(元)之間的函數關系式,并注明自變量的取值范圍;
(2)求出該個體戶每天銷售這種酒的毛利潤W(元)與每件酒的售價x(元)之間的函數關系式,并注明自變量的取值范圍(每件的毛利潤=售價-進價);
(3)當酒的售價為多少時平均每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

拋物線的頂點坐標是             .

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

函數y=(x+5)(2-x)圖像的開口方向是________。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

已知二次函數y=ax2+bx+c的圖象如圖,①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1),其中結論正確的有( 。
A.③④B.③⑤C.③④⑤D.②③④⑤

查看答案和解析>>

同步練習冊答案