【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

(1)甲登山上升的速度是每分鐘   米,乙在A地時距地面的高度b   米.

(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式.

(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?

【答案】(1)10,30;(2)y=;(3)登山4分鐘、9分鐘或15分鐘時,甲、乙兩人距地面的高度差為50米.

【解析】

(1)根據(jù)速度=高度÷時間即可算出甲登山上升的速度;根據(jù)高度=速度×時間即可算出乙在A地時距地面的高度b的值;

(2)分0≤x≤2x≥2兩種情況,根據(jù)高度=初始高度+速度×時間即可得出y關(guān)于x的函數(shù)關(guān)系;

(3)當(dāng)乙未到終點時,找出甲登山全程中y關(guān)于x的函數(shù)關(guān)系式,令二者做差等于50即可得出關(guān)于x的一元一次方程,解之即可求出x值;當(dāng)乙到達(dá)終點時,用終點的高度﹣甲登山全程中y關(guān)于x的函數(shù)關(guān)系式=50,即可得出關(guān)于x的一元一次方程,解之可求出x值.綜上即可得出結(jié)論.

1)(300﹣100)÷20=10(米/分鐘),

b=15÷1×2=30,

故答案為:10,30;

(2)當(dāng)0≤x≤2時,y=15x;

當(dāng)x≥2時,y=30+10×3(x﹣2)=30x﹣30,

當(dāng)y=30x﹣30=300時,x=11,

∴乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式為y=;

(3)甲登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式為y=10x+100(0≤x≤20).

當(dāng)10x+100﹣(30x﹣30)=50時,解得:x=4,

當(dāng)30x﹣30﹣(10x+100)=50時,解得:x=9,

當(dāng)300﹣(10x+100)=50時,解得:x=15,

答:登山4分鐘、9分鐘或15分鐘時,甲、乙兩人距地面的高度差為50米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年初,東北遭遇了幾次大量降雪天氣,某市出動了多輛清雪車連夜清雪.大型清雪車比小型清雪車每小時多清掃路面6 km,大型清雪車清掃路面90 km與小型清雪車清掃路面60 km所用的時間相同,求小型清雪車每小時清掃路面的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)41(2)0+3÷;

(2)(π-3)0()2+4×21

(3)()1+(π-2018)0(1)2019.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)是(0,2),點Cx軸上的一個動點.當(dāng)點Cx軸上移動時,始終保持△ACP是等邊三角形(點A、C、P按逆時針方向排列);當(dāng)點C移動到點O時,得到等邊三角形AOB(此時點P與點B重合).

初步探究

(1)寫出點B的坐標(biāo)   

(2)Cx軸上移動過程中,當(dāng)?shù)冗吶切?/span>ACP的頂點P在第三象限時,連接BP,求證:△AOC≌△ABP.

深入探究

(3)當(dāng)點Cx軸上移動時,點P也隨之運動.探究點P在怎樣的圖形上運動,請直接寫出結(jié)論;并求出這個圖形所對應(yīng)的函數(shù)表達(dá)式.

拓展應(yīng)用

(4)Cx軸上移動過程中,當(dāng)△POB為等腰三角形時,直接寫出此時點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,一只螞蟻從A點出發(fā),沿著A-B-C-D-A…循環(huán)爬行,其中A點坐標(biāo)為(1,-1),B點坐標(biāo)為(-1,-1),C點坐標(biāo)為(-1,3),D點坐標(biāo)為(1,3),當(dāng)螞蟻爬了2 018個單位長度時,它所處位置的坐標(biāo)為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB切⊙O于A、B兩點,CD切⊙O于點E,分別交PA、PB于點C、D.若PA、PB的長是關(guān)于x的一元二次方程x2﹣mx+m﹣1=0的兩個根,求△PCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a=2017x﹣20,b=2017x﹣18,c=2017x﹣16,求a2+b2+c2﹣ab﹣ac﹣bc的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AB=5,AC=3,D點從BC的中點到C點運動,點E在AD上,以E為圓心的⊙E分別與AB、BC相切,則⊙E的半徑R的取值范圍為(  )

A.≤R≤
B.≤R≤
C.≤R≤2
D.1≤R≤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】任何一個正整數(shù)n都可以進(jìn)行這樣的分解:ns×t(s,t是正整數(shù),且st),如果p×qn的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×qn的最佳分解,并規(guī)定:、例如18可以分解成1×18,2×93×6這三種,這時就有.給出下列關(guān)于F(n)的說法:(1);(2)(3)F(27)3;(4)n是一個整數(shù)的平方,則F(n)1.其中正確說法的有_____

查看答案和解析>>

同步練習(xí)冊答案