如圖1,小明將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,將△EFG的頂點G移到矩形的頂點B處,再將三角形繞點B順時針旋轉(zhuǎn)使E點落在CD邊上,此時,EF恰好經(jīng)過點A(如圖2),
(1)求證:∠AED=∠AEB;(2)如果測得AB=5,BC=4,求FG的長.
精英家教網(wǎng)
分析:(1)先根據(jù)AB=BE,可知∠BAE=∠AEB,再根據(jù)矩形的性質(zhì)即可得出結(jié)論;
(2)由圖形旋轉(zhuǎn)的性質(zhì)可知BE的長,利用勾股定理的求出CE的長,利用相似三角形的性質(zhì)可判定出△ADE∽△FBE,根據(jù)相似三角形的對應(yīng)邊成比例即可得出結(jié)論.
解答:解:(1)∵AB=BE=5,
∴∠BAE=∠AEB,(1分)
在矩形ABCD中,AB∥DC,
∴∠BAE=∠AED,(2分)
∴∠AEB=∠AED.(3分)

(2)在Rt△BCE中,BC=4,BE=5,根據(jù)勾股定理CE=
52-42
=3,
∴DE=DC-EC=2,(5分)
∵∠AEB=∠AED.∠ADE=∠EBF=90°,
∴△ADE∽△FBE,(7分)
AD
BF
=
DE
BE
,
即BF=
5×4
2
=10.(9分)
點評:本題考查的是相似三角形的判定與性質(zhì),圖形旋轉(zhuǎn)的性質(zhì)、矩形的性質(zhì)及勾股定理,涉及面較廣,難易適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,小明將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測得AB=5,AD=4.在進行如下操作時遇到了下面的幾個問題,請你幫助解決.
精英家教網(wǎng)
(1)將△EFG的頂點G移到矩形的頂點B處,再將三角形繞點B順時針旋轉(zhuǎn)使E點落在CD邊上,此時,EF恰好經(jīng)過點A(如圖2),請你求出△ABF的面積;
(2)在(1)的條件下,小明先將三角形的邊EG和矩形邊AB重合,然后將△EFG沿直線BC向右平移,至F點與B重合時停止.在平移過程中,設(shè)G點平移的距離為x,兩紙片重疊部分面積為y,求在平移的整個過程中,y與x的函數(shù)關(guān)系式,并求當(dāng)重疊部分面積為10時,平移距離x的值(如圖3);
(3)在(2)的操作中,小明發(fā)現(xiàn)在平移過程中,雖然有時平移的距離不等,但兩紙片重疊的面積卻是相等的;而有時候平移的距離不等,兩紙片重疊部分的面積也不可能相等.請?zhí)剿鬟@兩種情況下重疊部分面積y的范圍(直接寫出結(jié)果).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜春模擬)課題:探求直角梯形剪開后進行旋轉(zhuǎn)、平移操作相關(guān)問題.如圖1,小明將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測得AB=10,AD=8.在進行如下操作時遇到了下面的幾個問題,請你幫助解決.
觀察計算:
(1)將△EFG的頂點G移到矩形的頂點B處,再將三角形繞點B順時針旋轉(zhuǎn)使E點落在CD邊上,此時,EF恰好經(jīng)過點A(如圖2),請你求出AE和FG的長度.
探索發(fā)現(xiàn):
(2)在(1)的條件下,小明先將三角形的邊EG和矩形邊AB重合,然后將△EFG沿直線BC向右平移,至F點與B重合時停止.在平移過程中,設(shè)G點平移的距離為x,兩紙片重疊部分面積為y,求在平移的整個過程中,y與x的函數(shù)關(guān)系式,并求當(dāng)重疊部分面積為20時,平移距離x的值(如圖3).
(3)在(2)的操作中,小明發(fā)現(xiàn)在平移過程中,雖然有時平移的距離不等,但兩紙片重疊的面積卻是相等的;而有時候平移的距離不等,兩紙片重疊部分的面積也不可能相等.請?zhí)剿鬟@兩種情況下重疊部分面積y的范圍(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,小明將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測得AB=5,AD=4.在進行如下操作時遇到了下列幾個問題,請你幫助解決.

(1)如圖2,將△EFG的頂點G移到矩形的頂點B處,再將三角形繞點B順時針旋轉(zhuǎn)使E點落在CD邊上,此時EF恰好經(jīng)過點A.
①請證明:△ADE∽△FGE;②求出FG的長度;
(2)如圖3,在(1)的條件下,小明先將△EFG的邊EG和矩形的邊AB重合,然后將△EFG沿直線BC向右平移,至F點與B重合時停止.在平移過程中,設(shè)G點平移的距離為x,兩紙片重疊部分面積為y,求在平移的整個過程中,y與x的函數(shù)關(guān)系式.
(3)請直接寫出,當(dāng)重疊面積y在什么范圍時,對應(yīng)的平移距離x有兩個值;當(dāng)重疊面積y在什么范圍時,相對應(yīng)的平移距離x只有一個值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省淮安市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2011•如東縣模擬)如圖1,小明將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測得AB=5,AD=4.在進行如下操作時遇到了下面的幾個問題,請你幫助解決.

(1)將△EFG的頂點G移到矩形的頂點B處,再將三角形繞點B順時針旋轉(zhuǎn)使E點落在CD邊上,此時,EF恰好經(jīng)過點A(如圖2),請你求出△ABF的面積;
(2)在(1)的條件下,小明先將三角形的邊EG和矩形邊AB重合,然后將△EFG沿直線BC向右平移,至F點與B重合時停止.在平移過程中,設(shè)G點平移的距離為x,兩紙片重疊部分面積為y,求在平移的整個過程中,y與x的函數(shù)關(guān)系式,并求當(dāng)重疊部分面積為10時,平移距離x的值(如圖3);
(3)在(2)的操作中,小明發(fā)現(xiàn)在平移過程中,雖然有時平移的距離不等,但兩紙片重疊的面積卻是相等的;而有時候平移的距離不等,兩紙片重疊部分的面積也不可能相等.請?zhí)剿鬟@兩種情況下重疊部分面積y的范圍(直接寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案