(2002•岳陽)如圖,已知?ABCD的對(duì)角線AC、BD相交于點(diǎn)O,過點(diǎn)O任作一直線分別交AD、CB的延長(zhǎng)線于E、F,求證:OE=OF.
分析:根據(jù)平行四邊形的對(duì)邊平行可得AD∥BC,然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠E=∠F,∠EAO=∠FCO,又因?yàn)槠叫兴倪呅蔚膶?duì)角線互相平分,所以,AO=CO,然后利用“角角邊”證明△AOE和△COF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等即可證明.
解答:證明:在?ABCD中,AO=CO,AD∥BC,
∴∠E=∠F,∠EAO=∠FCO,
在△AOE和△COF中,
∠E=∠F
∠EAO=∠FCO
AO=CO
,
∴△AOE≌△COF(AAS),
∴OE=OF.
點(diǎn)評(píng):本題考查了平行四邊形的對(duì)邊平行,對(duì)角線互相平分的性質(zhì),以及全等三角形的判定與性質(zhì),證明兩邊相等,就證明這兩邊所在的三角形全等,是幾何證明中常用的方法,一定要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2002•岳陽)如圖,直線AB、CD相交于點(diǎn)O,OA平分∠EOC,∠EOC=76°,則∠BOD=
38°
38°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2002•岳陽)如圖,△ABC中,DE∥BC,AD=2cm,AB=6cm,AE=1.5cm,則EC=
3cm
3cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2002•岳陽)已知:如圖,△ABC內(nèi)接于⊙O,AB=AC=2
3
cm,過點(diǎn)A的弦交BC于點(diǎn)D,交圓于點(diǎn)E,且AD=2cm,求線段DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2002•岳陽)已知:如圖,直線MN和⊙O切于點(diǎn)C,AB是⊙O的直徑,AE⊥MN,BF⊥MN且與⊙O交于點(diǎn)G,垂足分別是E、F,AC是⊙O的弦,
(1)求證:AB=AE+BF;
(2)令A(yù)E=m,EF=n,BF=p,證明:n2=4mp;
(3)設(shè)⊙O的半徑為5,AC=6,求以AE、BF的長(zhǎng)為根的一元二次方程;
(4)將直線MN向上平行移動(dòng)至與⊙O相交時(shí),m、n、p之間有什么關(guān)系?向下平行移動(dòng)至與⊙O相離時(shí),m、n、p之間又有什么關(guān)系?

查看答案和解析>>

同步練習(xí)冊(cè)答案