如圖,在△ABC中,BC=6cm,CA=8cm,∠C=90°,⊙O是△ABC的內(nèi)切圓,點(diǎn)P從點(diǎn)B開始沿BC邊向C以1cm/s的速度移動(dòng),點(diǎn)Q從C點(diǎn)開始沿CA邊向點(diǎn)A以2cm/s的速度移動(dòng)。

(1)求⊙O的半徑;
(2)若P、Q分別從B、C同時(shí)出發(fā),當(dāng)Q移動(dòng)到A時(shí),P點(diǎn)與⊙O是什么位置關(guān)系?
(3)若P、Q分別從B、C同時(shí)出發(fā),當(dāng)Q移動(dòng)到A時(shí),移動(dòng)停止,則經(jīng)過幾秒,△PCQ的面積等于5cm2?
(1)2;(2)P點(diǎn)在⊙O上;(3)1.

試題分析:(1)連接AO、BO、CO,利用面積法易求出⊙O的半徑;
(2)設(shè)⊙O與三角形三邊的切點(diǎn)分別為D、E、F,易求各段的長(zhǎng)度,再求出Q點(diǎn)運(yùn)動(dòng)的時(shí)間,即可判斷P點(diǎn)的位置;
(3)設(shè)經(jīng)過t秒.分別用含有t的代數(shù)式表示PC、CQ代入三角形面積計(jì)算公式即可求出t的值.
試題解析:(1)在Rt△ABC中,BC=6cm,CA=8cm,∠C=90°,由勾股定理得AB=10cm,
設(shè)⊙O的半徑為r,則有:S△ABO+ S△BOC+ S△AOC=AC×BC
AB×r+BC×r+AC×r==AC×BC
所以r=2cm
(2)如圖,⊙O與三角形三邊的切點(diǎn)分別為D、E、F,設(shè)BD=BE=xcm,則CD=CQ=(6-x)cm,AQ=AE=(2+x)cm.

∴2+x+x=10
∴x=4即BD=4cm.
點(diǎn)Q從C到A的時(shí)間為:8÷2=4(分鐘)
∴P運(yùn)動(dòng)到點(diǎn)D,即P點(diǎn)在⊙O上;
(3)設(shè)經(jīng)過t秒,則PC=(6-t)cm,CQ=2t.
又△PCQ的面積等于5cm2
(6-t)×2t=5
解得t=1或t=5(大于4s,故舍去)
考點(diǎn): (1)圓的切線;(2)一元二次方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點(diǎn),過C作CD⊥AB于點(diǎn)D,CD交AE于點(diǎn)F,過C作CG∥AE交BA的延長(zhǎng)線于點(diǎn)G.連接OC交AE于點(diǎn)H。

(1)求證:GC⊥OC.
(2)求證:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,AB是⊙O的弦,OC是⊙O的半徑,OC⊥AB于點(diǎn)D,若AB=8,CD=2,則⊙O的半徑等于( 。
A.5B.6C.8D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在中,.⊙O截的三條邊所得的弦長(zhǎng)相等,則的度數(shù)為( )
 
A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,⊙O的半徑為2,弦AB=2,點(diǎn)C在弦AB上,AC=AB,則OC的長(zhǎng)為(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果兩圓的半徑分別是4和7,兩圓的連心線段長(zhǎng)為3,則兩圓的位置關(guān)系是
A.外離B.內(nèi)含C.外切D.內(nèi)切

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB為⊙O的直徑,點(diǎn)P為其半圓上任意一點(diǎn)(不含A、B),點(diǎn)Q為另一半圓上一定點(diǎn),若∠POA為x°,∠PQB為y°,則y與x的函數(shù)關(guān)系是              .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

P為⊙O內(nèi)一點(diǎn),OP=3cm,⊙ O半徑為5cm,則經(jīng)過P點(diǎn)的最短弦長(zhǎng)為_________;最長(zhǎng)弦長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知扇形AOB的半徑為6㎝,圓心角的度數(shù)為120°,若將此扇形圍成一個(gè)圓錐,則圍成的圓錐的側(cè)面積為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案