27、如圖,△ABC中,∠ACB=90°,AC=6,BC=8.點P從A點出發(fā)沿A-C-B路徑向終點運動,終點為B點;點Q從B點出發(fā)沿B-C-A路徑向終點運動,終點為A點.點P和Q分別以1和3的運動速度同時開始運動,兩點都要到相應的終點時才能停止運動,在某時刻,分別過P和Q作PE⊥l于E,QF⊥l于F.問:點P運動多少時間時,△PEC與QFC全等?請說明理由.
分析:推出CP=CQ,①P在AC上,Q在BC上,推出方程6-t=8-3t,②P、Q都在AC上,此時P、Q重合,得到方程6-t=3t-8,Q在AC上,P在BC上,得到方程3t-8=t-6,求出方程的解即可.
解答:解:∵△PEC與QFC全等,
∴斜邊CP=CQ,
有三種情況:①P在AC上,Q在BC上,
CP=6-t,CQ=8-3t,
∴6-t=8-3t,
∴t=1;
②P、Q都在AC上,此時P、Q重合,
∴CP=6-t=3t-8,
∴t=3.5,
③Q在AC上,P在BC上,CQ=CP,
3t-8=t-6,
∴t=1,
AC+CP=12,
答:點P運動1或3.5或12時,△PEC與QFC全等.
點評:本題主要考查對全等三角形的性質,解一元一次方程等知識點的理解和掌握,能根據題意得出方程是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案