(2012•青島)點A(x1,y1),B(x2,y2),C(x3,y3)都是反比例函數(shù)y=
-3
x
的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關(guān)系是( �。�
分析:先根據(jù)反比例函數(shù)y=
-3
x
中k的符號判斷出此函數(shù)圖象所在象限,再根據(jù)x1<x2<0<x3判斷出y1,y2,y3的大小關(guān)系即可.
解答:解:∵反比例函數(shù)y=
-3
x
中,k=-3<0,
∴此函數(shù)圖象在二四象限,且在每一象限內(nèi)y隨x的增大而增大,
∵x1<x2<0<x3,
∴y3<0,y3<0<y1<y2,
∴y3<y1<y2
故選A.
點評:本題考查的是反比例函數(shù)圖象上點的坐標(biāo)特點,根據(jù)函數(shù)解析式判斷出函數(shù)圖象所在的象限是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•青島)如圖,點A、B、C在⊙O上,∠AOC=60°,則∠ABC的度數(shù)是
150°
150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•青島)已知:如圖,四邊形ABCD的對角線AC、BD交于點O,BE⊥AC于E,DF⊥AC于F,點O既是AC的中點,又是EF的中點.
(1)求證:△BOE≌△DOF;
(2)若OA=
12
BD,則四邊形ABCD是什么特殊四邊形?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•青島)問題提出:以n邊形的n個頂點和它內(nèi)部的m個點,共(m+n)個點作為頂點,可把原n邊形分割成多少個互不重疊的小三角形?
問題探究:為了解決上面的問題,我們將采取一般問題特殊性的策略,先從簡單和具體的情形入手:
探究一:以△ABC的三個頂點和它內(nèi)部的1個點P,共4個點為頂點,可把△ABC分割成多少個互不重疊的小三角形?
如圖①,顯然,此時可把△ABC分割成3個互不重疊的小三角形.
探究二:以△ABC的三個頂點和它內(nèi)部的2個點P、Q,共5個點為頂點,可把△ABC分割成多少個互不重疊的小三角形?
在探究一的基礎(chǔ)上,我們可看作在圖①△ABC的內(nèi)部,再添加1個點Q,那么點Q的位置會有兩種情況:
一種情況,點Q在圖①分割成的某個小三角形內(nèi)部.不妨假設(shè)點Q在△PAC內(nèi)部,如圖②;
另一種情況,點Q在圖①分割成的小三角形的某條公共邊上.不妨假設(shè)點Q在PA上,如圖③.
顯然,不管哪種情況,都可把△ABC分割成5個不重疊的小三角形.
探究三:以△ABC的三個頂點和它內(nèi)部的3個點P、Q、R,共6個點為頂點可把△ABC分割成
7
7
個互不重疊的小三角形,并在圖④中畫出一種分割示意圖.
探究四:以△ABC的三個頂點和它內(nèi)部的m個點,共(m+3)個頂點可把△ABC分割成
(2m+1)
(2m+1)
個互不重疊的小三角形.
探究拓展:以四邊形的4個頂點和它內(nèi)部的m個點,共(m+4)個頂點可把四邊形分割成
(2m+2)
(2m+2)
個互不重疊的小三角形.
問題解決:以n邊形的n個頂點和它內(nèi)部的m個點,共(m+n)個頂點可把△ABC分割成
(2m+n-2)
(2m+n-2)
個互不重疊的小三角形.
實際應(yīng)用:以八邊形的8個頂點和它內(nèi)部的2012個點,共2020個頂點,可把八邊形分割成多少個互不重疊的小三角形?(要求列式計算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•青島模擬)如圖,在平面直角坐標(biāo)系中,若△ABC繞點E旋轉(zhuǎn)180°后與△A1B1C1完全重合,則點E的坐標(biāo)是( �。�

查看答案和解析>>

同步練習(xí)冊答案
关 闭