【題目】如圖,正方形ABCD的邊長(zhǎng)為4,邊BC在x軸上,點(diǎn)E是對(duì)角線AC,BD的交點(diǎn),反比例函數(shù)y=的圖象經(jīng)過(guò)A,E兩點(diǎn),則k的值為( 。
A. 8B. 4C. 6D. 3
【答案】A
【解析】
設(shè)B(a,0),則C(a+4,0),A(a,4),利用正方形的性質(zhì)得點(diǎn)E為AC的中點(diǎn),則可表示出E(a+2,2),然后利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得到k=4a=2(a+2),再求出a后易得k的值.
解:設(shè)B(a,0),則C(a+4,0),A(a,4),
∵點(diǎn)E為正方形ABCD的對(duì)角線的交點(diǎn),
∴點(diǎn)E為AC的中點(diǎn),
∴E(a+2,2),
∵點(diǎn)A和點(diǎn)E在反比例函數(shù)y=(x>0)的圖象上,
∴k=4a=2(a+2),解得a=2,
∴k=8.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某菜市場(chǎng)有2.5平方米和4平方米兩種攤位,2.5平方米的攤位數(shù)是4平方米攤位數(shù)的2倍.管理單位每月底按每平方米20元收取當(dāng)月管理費(fèi),該菜市場(chǎng)全部攤位都有商戶經(jīng)營(yíng)且各攤位均按時(shí)全額繳納管理費(fèi).
(1)菜市場(chǎng)毎月可收取管理費(fèi)4500元,求該菜市場(chǎng)共有多少個(gè)4平方米的攤位?
(2)為推進(jìn)環(huán)保袋的使用,管理單位在5月份推出活動(dòng)一:“使用環(huán)保袋送禮物”,2.5平方米和4平方米兩種攤位的商戶分別有40%和20%參加了此項(xiàng)活動(dòng).為提高大家使用環(huán)保袋的積極性,6月份準(zhǔn)備把活動(dòng)一升級(jí)為活動(dòng)二:“使用環(huán)保袋抵扣管理費(fèi)”,同時(shí)終止活動(dòng)一.經(jīng)調(diào)査與測(cè)算,參加活動(dòng)一的商戶會(huì)全部參加活動(dòng)二,參加活動(dòng)二的商戶會(huì)顯著增加,這樣,6月份參加活動(dòng)二的2.5平方米攤位的總個(gè)數(shù)將在5月份參加活動(dòng)一的同面積個(gè)數(shù)的基礎(chǔ)上增加2a%,毎個(gè)攤位的管理費(fèi)將會(huì)減少;6月份參加活動(dòng)二的4平方米攤位的總個(gè)數(shù)將在5月份參加活動(dòng)一的同面積個(gè)數(shù)的基礎(chǔ)上增加6a%,每個(gè)攤位的管理費(fèi)將會(huì)減少.這樣,參加活動(dòng)二的這部分商戶6月份總共繳納的管理費(fèi)比他們按原方式共繳納的管理費(fèi)將減少,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是某小型汽車的側(cè)面示意圖,其中矩形ABCD表示該車的后備箱,在打開(kāi)后備箱的過(guò)程中,箱蓋ADE可以繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn),當(dāng)旋轉(zhuǎn)角為60°時(shí),箱蓋ADE落在AD'E'的位置(如圖2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.
(1)求點(diǎn)D'到BC的距離;
(2)求E、E'兩點(diǎn)的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:
第一步,分別以點(diǎn)A、D為圓心,以大于AD的長(zhǎng)為半徑在AD兩側(cè)作弧,交于兩點(diǎn)M、N;
第二步,連接MN分別交AB、AC于點(diǎn)E、F;
第三步,連接DE、DF.
若BD=6,AF=4,CD=3,求線段BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在以AB為直徑的⊙O上,AD與過(guò)點(diǎn)C的切線垂直,垂足為點(diǎn)D,AD交⊙O于點(diǎn)E.
(1)求證:AC平分∠DAB;
(2)連接BC,若cos∠CAD=,⊙O的半徑為5,求CD、AE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】ABCD中,E、F分別在邊AB和CD上,下列條件中,不能得出四邊形AECF一定為平行四邊形的是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個(gè)單位后得到△A1B1C1,請(qǐng)畫(huà)出△A1B1C1;
(2)將△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A2B2C2,請(qǐng)畫(huà)出△A2B2C2;
(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無(wú)須說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)與x軸交于點(diǎn)A(﹣5,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)若點(diǎn)E為x軸下方拋物線上的一動(dòng)點(diǎn),當(dāng)S△ABE=S△ABC時(shí),求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使∠BAP=∠CAE?若存在,求出點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD和正方形AEFG中,邊AE在邊AB上,AB=,AE=1.將正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),設(shè)BE的延長(zhǎng)線交直線DG于點(diǎn)P,當(dāng)點(diǎn)P,G第一次重合時(shí)停止旋轉(zhuǎn).在這個(gè)過(guò)程中:
(1)∠BPD=______度;
(2)點(diǎn)P所經(jīng)過(guò)的路徑長(zhǎng)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com