【題目】如圖1,在平面直角坐標(biāo)系中,過(guò)點(diǎn)(, )的直線(xiàn)交軸的正半軸于點(diǎn), .
(1)求直線(xiàn)的解析式;(直接寫(xiě)出結(jié)果)
(2)如圖2,點(diǎn)是軸上一動(dòng)點(diǎn),以為圓心, 為半徑作⊙,當(dāng)⊙與相切時(shí),設(shè)切點(diǎn)為,求圓心的坐標(biāo);
(3)在(2)的條件下,點(diǎn)在軸上,△是以為底邊的等腰三角形,求過(guò)點(diǎn)、、三點(diǎn)的拋物線(xiàn).
【答案】(1)直線(xiàn)的解析式為;
(2)當(dāng)⊙與相切時(shí),點(diǎn)坐標(biāo)為(, )或(, );
(3)過(guò)點(diǎn)、、三點(diǎn)的拋物線(xiàn)為或
【解析】試題分析:(1)、根據(jù)Rt△AOB的性質(zhì)求出點(diǎn)B的坐標(biāo),然后根據(jù)待定系數(shù)法求出函數(shù)解析式;(2)、根據(jù)⊙在直線(xiàn)AB的左側(cè)和右側(cè)兩種情況以及圓的切線(xiàn)的性質(zhì)分別求出AC的長(zhǎng)度,從而得出點(diǎn)C的坐標(biāo);(3)、本題也需要分兩種情況進(jìn)行討論:⊙在直線(xiàn)的右側(cè)相切時(shí)得出點(diǎn)D的坐標(biāo),根據(jù)等邊△的性質(zhì)得出的坐標(biāo),從而根據(jù)待定系數(shù)法求出拋物線(xiàn)的解析式;⊙在直線(xiàn)的左側(cè)相切時(shí),根據(jù)切線(xiàn)的直角三角形的性質(zhì)求出點(diǎn)的坐標(biāo),根據(jù)待定系數(shù)法求出拋物線(xiàn)的解析式.
試題解析:(1)∵(, ),∴. 在Rt△中, .
, . . ∴(, ).
設(shè)直線(xiàn)的解析式為.
則 解得 ∴直線(xiàn)的解析式為.
(2)如圖3,①當(dāng)⊙在直線(xiàn)的左側(cè)時(shí), ∵⊙與相切,∴.
在Rt△中, . , , .
而,∴與重合,即坐標(biāo)為(, ).
②根據(jù)對(duì)稱(chēng)性,⊙還可能在直線(xiàn)的右側(cè),與直線(xiàn)相切,此時(shí).
∴坐標(biāo)為(, ).
綜上,當(dāng)⊙與相切時(shí),點(diǎn)坐標(biāo)為(, )或(, ).
(3)如圖4,①⊙ 在直線(xiàn)的右側(cè)相切時(shí),點(diǎn)的坐標(biāo)為(, ).
此時(shí)△為等邊三角形.∴(, ).
設(shè)過(guò)點(diǎn)、、三點(diǎn)的拋物線(xiàn)的解析式為.
則 ∴
②當(dāng)⊙在直線(xiàn)的左側(cè)相切時(shí), (, )
設(shè),則, . 在Rt△中, .
, 即,
∴(, ).
設(shè)過(guò)點(diǎn)、、三點(diǎn)的拋物線(xiàn)的解析式為.
則
綜上,過(guò)點(diǎn)、、三點(diǎn)的拋物線(xiàn)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列五個(gè)命題:①直徑是弦,②優(yōu)弧大于劣弧,③等弧的弧長(zhǎng)相等,④平分弦的直徑垂直于弦,⑤等弧所對(duì)的弦相等.其中正確的有( )個(gè).
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A(-5,4)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)A/的坐標(biāo)為(。
A.(5,4)B.(5,-4)C.(-5,4)D.(-5,-4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( 。
A. 兩個(gè)數(shù)的和一定比這兩個(gè)數(shù)的差大 B. 零減去一個(gè)數(shù),仍得這個(gè)數(shù)
C. 兩個(gè)數(shù)的差小于被減數(shù) D. 正數(shù)減去負(fù)數(shù),結(jié)果是正數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程x(x﹣1)=x的根是( 。
A. x=2 B. x=﹣2 C. x1=﹣2,x2=0 D. x1=2,x2=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)y=-2x經(jīng)過(guò)點(diǎn)P(-2,a),點(diǎn)P關(guān)于y軸的對(duì)稱(chēng)點(diǎn)P'在反比例函數(shù)y = (k≠0)的圖像上。
(1)求a的值
(2)直接寫(xiě)出點(diǎn)P'的坐標(biāo)
(3)求反比例函數(shù)的解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E,F(xiàn)在BC上,EM垂直平分AB交AB于點(diǎn)M,F(xiàn)N垂直平分AC交AC于點(diǎn)N,∠EAF=90°,BC=12,EF=5.
(1)求∠BAC的度數(shù);
(2)求S△EAF .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com