此題綜合考查了角平分線的性質(zhì)、全等三角形的性質(zhì)和判定及含30°角的直角三角形的知識
(1)根據(jù)含30°角的直角三角形的性質(zhì)進行證明;
(2)作CE⊥AM、CF⊥AN于E、F.根據(jù)角平分線的性質(zhì),得CE=CF,根據(jù)等角的補角相等,得∠CDE=∠ABC,再根據(jù)AAS得到△CDE≌△CBF,則DE=BF.再由∠MAN=120°,AC平分∠MAN,得到∠ECA=∠FCA=30°,從而根據(jù)30°所對的直角邊等于斜邊的一半,得到
,
,等量代換后即可證明AD+AB=AC仍成立.
(1)∵∠MAN=120°,AC平分∠MAN,
∴∠CAD=∠CAB=60°.
又∠ABC=∠ADC=90°,
,
,
∴AB+AD=AC.
(2)結(jié)論仍成立.理由如下:作CE⊥AM、CF⊥AN于E、F.則∠CED=∠CFB=90°,
∵AC平分∠MAN,
∴CE=CF.
∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°
∴∠CDE=∠ABC,
在△CDE和△CBF中,
∴△CDE≌△CBF(AAS),
∴DE=BF.
∵∠MAN=120°,AC平分∠MAN,
∴∠MAC=∠NAC=60°,∴∠ECA=∠FCA=30°,
在Rt△ACE與Rt△ACF中,則有
,
,
則AD+AB=AD+AF+BF=AD+AF+DE=AE+AF==AC.
∴AD+AB=AC.