精英家教網 > 初中數學 > 題目詳情

(實踐題)(1)一條船向北偏東60°的方向航行到某地,然后依原航線返回,船返回時正確的方向是________.

(2)按圖中所示的方法將幾何體切開,所得的二個截面是不是都有互相平行的線段?如果有,將它們表示出來.

答案:
解析:

解:(1)南偏西60°點撥:畫出圖形,再確定方向.

(2)兩個圖中各有兩組,其中AB∥CD,AC∥BD.


提示:

結合截一個幾何體的截面圖形形狀找出平行線,并能正確表示.


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.
精英家教網
精英家教網
操作示例
小明取直角梯形ABCD的非直角腰CD的中點P,過點P作PE∥AB,剪下△PEC(如圖1),并將△PEC繞點P按逆時針方向旋轉180°到△PFD的位置,拼成新的圖形(如圖2).
(Ⅰ)思考與實踐:
(1)操作后小明發(fā)現(xiàn),拼成的新圖形是矩形,請幫他說明理由;
(2)類比圖2的剪拼方法,請你在圖3畫出剪拼成一個平行四邊形的示意圖.
(Ⅱ)發(fā)現(xiàn)與運用:
小白發(fā)現(xiàn):在一個四邊形中,只要有一組對邊平行,就可以剪拼成平行四邊形.
請你選擇下面兩題中的一題作答:(多做不加分,兩題都做按第一題計分)
(1)如圖4,在梯形ABCD中,AD∥BC,E是CD的中點,EF⊥AB于點F,AB=5,EF=4,求梯形ABCD的面積.
(2)如圖5的多邊形中,AE=CD,AE∥CD,能否沿一條直線進行剪切,拼成一個平行四邊形?若能,請你在圖中畫出剪拼的示意圖并作必要的文字說明;若不能,簡要說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

提出問題:如圖,在“兒童節(jié)”前夕,小明和小華分別獲得一塊分布均勻且形狀為等腰梯形和直角梯形的蛋糕(AD∥BC),在蛋糕的邊緣均勻分布著巧克力,小明和小華決定只切一刀將自己的這塊蛋糕平分(要求分得的蛋糕和巧克力質量都一樣).
背景介紹:這條分割直線既平分了梯形的面積,又平分了梯形的周長,我們稱這條線為梯形的“等分積周線”.
【小題1】小明很快就想到了一條分割直線,而且用尺規(guī)作圖作出.請你幫小明在圖1中作出這條“等分積周線”,從而平分蛋糕.


【小題2】小華覺得小明的方法很好,所以模仿著在自己的蛋糕(圖2)中畫了一條直線EF分別交AD、BC于點E、F.你覺得小華會成功嗎?如能成功,說出確定的方法;如不能成功,請說明理由
【小題3】通過上面的實踐,你一定有了更深刻的認識.若圖2中AD∥BC,∠A=90°,AD<BC,AB="4" cm,BC ="6" cm,CD= 5cm.請你找出梯形ABCD的所有“等分積周線”,并簡要的說明確定的方法.

查看答案和解析>>

科目:初中數學 來源:2010-2011學年江蘇省無錫市惠山區(qū)七年級下學期期中考試數學卷 題型:解答題

操作與實踐(7分)
【小題1】(1)如圖,已知△ABC,過點A畫一條平分三角形面積的直線;

【小題2】(2)如圖,已知,點E,F(xiàn)在上,點G,H在上,試說明△EGO與△FHO的面積相等;

【小題3】(3)如圖,點M在△ABC的邊上,過點M畫一條平分三角形面積的直線.
 

查看答案和解析>>

科目:初中數學 來源:2012屆江蘇省南菁中學九年級中考模擬數學試卷2 題型:解答題

提出問題:如圖,在“兒童節(jié)”前夕,小明和小華分別獲得一塊分布均勻且形狀為等腰梯形和直角梯形的蛋糕(AD∥BC),在蛋糕的邊緣均勻分布著巧克力,小明和小華決定只切一刀將自己的這塊蛋糕平分(要求分得的蛋糕和巧克力質量都一樣).
背景介紹:這條分割直線既平分了梯形的面積,又平分了梯形的周長,我們稱這條線為梯形的“等分積周線”.
【小題1】小明很快就想到了一條分割直線,而且用尺規(guī)作圖作出.請你幫小明在圖1中作出這條“等分積周線”,從而平分蛋糕.


【小題2】小華覺得小明的方法很好,所以模仿著在自己的蛋糕(圖2)中畫了一條直線EF分別交AD、BC于點E、F.你覺得小華會成功嗎?如能成功,說出確定的方法;如不能成功,請說明理由
【小題3】通過上面的實踐,你一定有了更深刻的認識.若圖2中AD∥BC,∠A=90°,AD<BC,AB="4" cm,BC ="6" cm,CD= 5cm.請你找出梯形ABCD的所有“等分積周線”,并簡要的說明確定的方法.

查看答案和解析>>

科目:初中數學 來源:2011-2012學年江蘇揚中市九年級下學期期中考試數學試卷(解析版) 題型:解答題

實踐應用(本小題滿分6分)

    江蘇省第八屆園博會于2013年在我市舉行,宣傳部門在一幢大樓(DE)的頂部豎有一塊“江魂秘境,水韻方舟”的宣傳牌CD,其寬度為2m,小明在平地上的A處,測得宣傳牌的底部D的仰角為60°;又沿著EA的方向前進了22m到B處,測得宣傳牌的底部D的仰角為45°(A、E之間有一條河),求這幢大樓DE的高度.(測角器的高度忽略不計,結果精確到0.1m.參考數據:1.414,1.732)

 

查看答案和解析>>

同步練習冊答案