梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,現(xiàn)有兩個動點P、Q分別從B、D兩點同時出發(fā),點P以每秒2cm的速度沿BC向終點C移動,點Q以每秒1cm的速度沿DA向終點A移動,線段PQ與BD相交于點E,過E作EF∥BC交CD于點F,射線QF交BC的延長線于點H,設動點P、Q移動的時間為t(單位:秒,0<t<10).
(1)當t為何值時,四邊形PCDQ為平行四邊形?
(2)在P、Q移動的過程中,線段PH的長是否發(fā)生改變?如果不變,求出線段PH的長;如果改變,請說明理由.
:解:(1)∵AD∥BC,BC=20cm,AD=10cm,點P、Q分別從B、D兩點同時出發(fā),點P以每秒2cm的速度沿BC向終點C移動,點Q以每秒1cm的速度沿DA向終點A移動,
∴DQ=t,PC=20﹣2t,
∵若四邊形PCDQ為平行四邊形,則DQ=PC,
∴20﹣2t=t,
解得:t=;
(2)線段PH的長不變,
∵AD∥BH,P、Q兩點的速度比為2:1,
∴QD:BP=1:2,
∴QE:EP=ED:BE=1:2,
∵EF∥BH,
∴ED:DB=EF:BC=1:3,
∵BC=20,
∴EF=,
∴:=,
∴PH=20cm.
解析::(1)如果四邊形PCDQ為平行四邊形,則DQ=CP,根據P、Q兩點的運動速度,結合運動時間t,求出DQ、CP的長度表達式,解方程即可;
(2)PH的長度不變,根據P、Q兩點的速度比,即可推出QD:BP=1:2,根據平行線的性質推出三角形相似,得出相似比,即可推出PH=20.
【關鍵
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com