(2006•常德)如圖,小山的頂部是一塊平地,在這塊平地上有一高壓輸電的鐵架,小山的斜坡的坡度i=1:,斜坡BD的長是50米,在山坡的坡底B處測得鐵架頂端A的仰角為45°,在山坡的坡頂D處測得鐵架頂端A的仰角為60°.
(1)求小山的高度;
(2)求鐵架的高度.(≈1.73,精確到0.1米)

【答案】分析:(1)過D作DF垂直于坡底的水平線BC于點F,再由斜坡的坡比的概念,可得坡角為30°;解Rt△DFB可得DF即山高;
(2)首先根據(jù)題意分析圖形;本題涉及到兩個直角三角形Rt△AED與Rt△ACB,解可得AC與BC的大小,再由AC=AE+EC,進而可求出答案.
解答:解:(1)如圖,過D作DF垂直于坡底的水平線BC于點F.
由已知,斜坡的坡比i=1:,于是tan∠DBC=,
∴坡角∠DBC=30°.
于是在Rt△DFB中,DF=DBsin30°=25,
即小山高為25米.

(2)設(shè)鐵架的高AE=x.
在Rt△AED中,已知∠ADE=60°,于是DE=
在Rt△ACB中,已知∠ABC=45°,
∵AC=AE+EC=AE+DF=x+25,
又BC=BF+FC=BF+DE=25x,
由AC=BC,得x+25=25x.
∴x=25≈43.3,即鐵架高43.3米.
點評:本題考查俯角、仰角的定義,要求學(xué)生能借助俯角、仰角構(gòu)造直角三角形并結(jié)合圖形利用三角函數(shù)解直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•常德)如圖,在直角坐標(biāo)系中,已知點A(,0),B(-,0),以點A為圓心,AB為半徑的圓與x軸相交于點B,C,與y軸相交于點D,E.
(1)若拋物線y=x2+bx+c經(jīng)過C,D兩點,求拋物線的解析式,并判斷點B是否在該拋物線上;
(2)在(1)中的拋物線的對稱軸上求一點P,使得△PBD的周長最;
(3)設(shè)Q為(1)中的拋物線的對稱軸上的一點,在拋物線上是否存在這樣的點M,使得四邊形BCQM是平行四邊形?若存在,求出點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省杭州市高中招生學(xué)習(xí)能力數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2006•常德)如圖,在直角坐標(biāo)系中,已知點A(,0),B(-,0),以點A為圓心,AB為半徑的圓與x軸相交于點B,C,與y軸相交于點D,E.
(1)若拋物線y=x2+bx+c經(jīng)過C,D兩點,求拋物線的解析式,并判斷點B是否在該拋物線上;
(2)在(1)中的拋物線的對稱軸上求一點P,使得△PBD的周長最;
(3)設(shè)Q為(1)中的拋物線的對稱軸上的一點,在拋物線上是否存在這樣的點M,使得四邊形BCQM是平行四邊形?若存在,求出點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖南省常德市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•常德)如圖,在直角坐標(biāo)系中,已知點A(,0),B(-,0),以點A為圓心,AB為半徑的圓與x軸相交于點B,C,與y軸相交于點D,E.
(1)若拋物線y=x2+bx+c經(jīng)過C,D兩點,求拋物線的解析式,并判斷點B是否在該拋物線上;
(2)在(1)中的拋物線的對稱軸上求一點P,使得△PBD的周長最小;
(3)設(shè)Q為(1)中的拋物線的對稱軸上的一點,在拋物線上是否存在這樣的點M,使得四邊形BCQM是平行四邊形?若存在,求出點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年山東省濰坊市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:選擇題

(2006•常德)如圖,在直角坐標(biāo)系中,⊙O的半徑為1,則直線y=-x+與⊙O的位置關(guān)系是( )

A.相離
B.相交
C.相切
D.以下三種情形都有可能

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《代數(shù)式》(05)(解析版) 題型:填空題

(2006•常德)如圖是一個有規(guī)律排列的數(shù)表,請用含n的代數(shù)式(n為正整數(shù))表示數(shù)表中第n行第n列的數(shù):   

查看答案和解析>>

同步練習(xí)冊答案