18.如果關(guān)于x,y的二元一次方程組$\left\{\begin{array}{l}{3x-ay=16}\\{2x+by=15}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=7}\\{y=1}\end{array}\right.$,那么關(guān)于m,n的二元一次方程組$\left\{\begin{array}{l}{3(m+n)-a(m-n)=16}\\{2(m+n)+b(m-n)=15}\end{array}\right.$的解是$\left\{\begin{array}{l}{m=4}\\{n=3}\end{array}\right.$.

分析 仿照已知方程組的解,列出關(guān)于m與n的方程組,求出方程組的解即可得到m與n的值即可.

解答 解:∵二元一次方程組$\left\{\begin{array}{l}{3x-ay=16}\\{2x+by=15}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=7}\\{y=1}\end{array}\right.$,
∴關(guān)于m,n的二元一次方程組$\left\{\begin{array}{l}{3(m+n)-a(m-n)=16}\\{2(m+n)+b(m-n)=15}\end{array}\right.$的解是$\left\{\begin{array}{l}{m+n=7}\\{m-n=1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{m=4}\\{n=3}\end{array}\right.$,
故答案為:$\left\{\begin{array}{l}{m=4}\\{n=3}\end{array}\right.$

點評 此題考查了二元一次方程組的解,利用了類比的方法,弄清題中方程組解的特征是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,點D、E分別為△ABC的邊AB、AC上的中點,則△ADE的面積與四邊形BCED的面積的比為( 。
A.1:2B.1:3C.1:4D.1:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知P為正方形ABCD的外接圓的劣弧$\widehat{AD}$上任意一點,求證:$\frac{PA+PC}{PB}$為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.解方程:(x-3)2=2x(x-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.5x+3=-7x+9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

3.下列語句正確的是( 。
A.-3是27的負(fù)的立方根B.(-1)2的平方根是-1
C.$\sqrt{64}$的立方根是2D.(-1)2的立方根是-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.如圖,lA,lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系.
(1)走了一段路后,自行車因故障,進行修理,所用的時間是1小時.
(2)B出發(fā)后3小時與A相遇
(3)修理后的自行車速度是多少?A步行速度是多少?
(4)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,幾小時與A相遇?相遇點離B的出發(fā)點幾千米?
(5)求出A行走的路程S與時間t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.(1)計算:$\sqrt{27}$-($\frac{1}{3}$)-2+|$\sqrt{3}$-2|-2tan60°+(2017-π)0
(2)化簡:[x(x2y2-xy)-y(x2-x3y)]÷x2y.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.若關(guān)于x的一元二次方程(k-1)x2+4x+1=0有兩個不相等的實數(shù)根,則k的取值范圍是( 。
A.k<5B.k<5且k≠1C.k≤5且k≠1D.k>5

查看答案和解析>>

同步練習(xí)冊答案