(2006•廣安)矩形具有而菱形不具有的性質(zhì)是( )
A.對(duì)角線互相平分
B.對(duì)角線互相垂直
C.對(duì)角線相等
D.對(duì)角線平分一組對(duì)角
【答案】分析:根據(jù)矩形的對(duì)角線互相平分、相等和菱形的對(duì)角線互相平分、垂直、對(duì)角線平分一組對(duì)角,即可推出答案.
解答:解:菱形的對(duì)角線互相平分、垂直、對(duì)角線平分一組對(duì)角,
矩形的對(duì)角線互相平分、相等,
∴矩形具有而菱形不具有的性質(zhì)是對(duì)角線相等,
故選C.
點(diǎn)評(píng):本題主要考查對(duì)矩形的性質(zhì),菱形的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,能熟練地根據(jù)矩形和菱形的性質(zhì)進(jìn)行判斷是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年河南省漯河市龍城一中中考數(shù)學(xué)最后一次模擬試卷(解析版) 題型:解答題

(2006•廣安)如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長(zhǎng)為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B,且12a+5c=0.
(1)求拋物線的解析式;
(2)如果點(diǎn)P由點(diǎn)A開始沿AB邊以2cm/s的速度向點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B開始沿BC邊以1cm/s的速度向點(diǎn)C移動(dòng).
①移動(dòng)開始后第t秒時(shí),設(shè)S=PQ2(cm2),試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S取得最小值時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年四川省廣安市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•廣安)如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長(zhǎng)為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B,且12a+5c=0.
(1)求拋物線的解析式;
(2)如果點(diǎn)P由點(diǎn)A開始沿AB邊以2cm/s的速度向點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B開始沿BC邊以1cm/s的速度向點(diǎn)C移動(dòng).
①移動(dòng)開始后第t秒時(shí),設(shè)S=PQ2(cm2),試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S取得最小值時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年廣東省湛江市初中畢業(yè)生學(xué)業(yè)水平綜合測(cè)試數(shù)學(xué)試卷(二)(解析版) 題型:選擇題

(2006•廣安)矩形具有而菱形不具有的性質(zhì)是( )
A.對(duì)角線互相平分
B.對(duì)角線互相垂直
C.對(duì)角線相等
D.對(duì)角線平分一組對(duì)角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年四川省廣安市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2006•廣安)矩形具有而菱形不具有的性質(zhì)是( )
A.對(duì)角線互相平分
B.對(duì)角線互相垂直
C.對(duì)角線相等
D.對(duì)角線平分一組對(duì)角

查看答案和解析>>

同步練習(xí)冊(cè)答案