已知一個直角三角形紙片OAB,其中∠AOB=90°,OA=2,OB=4.如圖,將該紙片放置在平面直角坐標系中,折疊該紙片,折痕與邊OB交于點C,與邊AB交于點D.

(1)若折疊后使點B與點O重合,則點C的坐標為______;若折疊后使點B與點A重合,則點C的坐標為______;
(2)若折疊后點B落在邊OA上的點為B′,設OB′=x,OC=y,試寫出y關于x的函數(shù)解析式,并確定y的取值范圍;
(3)若折痕經(jīng)過點O,請求出點B落在x軸上的點B′的坐標;
(4)若折疊后點B落在邊OA上的點為B′,且使DB′⊥OA,求此時點C的坐標.
(1)如圖(1),∵OB=4,延CD折疊后使點B與點O重合,
∴OC=BC=
1
2
OB=2,
∴C的坐標是(0,2),
如圖(2)連接AC,
∵OB=4,延CD折疊后使點B與點A重合,
∴BC=AC,
設OC=a,則AC=BC=4-a,在Rt△ACO中,由勾股定理得:OC2+OA2=AC2,
a2+22=(4-a)2
解得:a=
3
2
,
即C(0,
3
2
),
故答案為:(0,2),(0,
3
2
).
(2)如圖(3)連接B′C,
∵延CD折疊后使點B與點B′重合,
∴BC=B′C=4-y,
在Rt△B′OC中,由勾股定理得:OC2+OB′2=B′C2
y2+x2=(4-y)2,
即y=-
1
8
x2+2,y的取值范圍是
3
2
≤y≤2.
(3)如圖(4)
∵若折痕經(jīng)過點O(C和O重合),點B落在x軸上的點B′,
∴OB=OB′=4,
即B′的坐標是(4,0).
(4)如圖(5)連接B′C,
設OB′=x,OC=y,
∵延CD折疊B和B′重合,
∴BC=B′C,BD=B′D,
∴∠CBB′=∠CB′B,∠DBB′=∠DB′B,
∵B′D⊥OA,∠AOB=90°,
∴B′DOB,
∴∠CBB′=∠BB′D,
∴∠CBB′=∠B′BD,
∴B′CBD,
∴△OB′C△OAB,
OB′
OA
=
OC
OB
,
x
2
=
y
4
,
即y=2x,
∴OB′=x,OC=2x,BC=4-2x=B′C,
在Rt△COB′中,由勾股定理得:x2+(2x)2=(4-2x)2
∵x為邊長,
∴x>0,
解方程得:x=4
5
-8,2x=-16+8
5

∴C的坐標是(0,-16+8
5
).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

甲、乙兩人同時登云霧山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,若乙提速后乙的速度是甲的3倍,從甲、乙相距100米到乙追上甲時,甲、乙兩人一共攀登了______米.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

水庫的庫容通常是用水位的高低來預測的.下表是某市一水庫在某段水位范圍內(nèi)的庫容與水位高低的相關水文資料,請根據(jù)表格提供的信息回答問題.
水位高低x(單位:米)10203040
庫容y(單位:萬立方米)3000360042004800
(1)將上表中的各對數(shù)據(jù)作為坐標(x,y),在給出的坐標系中用點表示出來:
(2)用線段將(1)中所畫的點從左到右順次連接.若用此圖象來模擬庫容y與水位高低x的函數(shù)關系.根據(jù)圖象的變化趨勢,猜想y與x間的函數(shù)關系,求出函數(shù)關系式并加以驗證;
(3)由于鄰近市區(qū)連降暴雨,河水暴漲,抗洪形勢十分嚴峻,上級要求該水庫為其承擔部分分洪任務約800萬立方米.若該水庫當前水位為65米,且最高水位不能超過79米.請根據(jù)上述信息預測:該水庫能否承擔這項任務并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

小麗一家利用元旦三天駕車到某景點旅游,小汽車出發(fā)前油箱有油36L,行駛若干小時后,中途在加油站加油若干升,油箱中余油量Q(L)與行駛時間t(h)之間的關系如圖所示,根據(jù)圖象回答下列問題:
(1)汽車行駛______h后加油,中途加油______L;
(2)求加油前油箱余沒油量Q與行駛時間t之間的函數(shù)關系式;
(3)如果加油站距景點200km,車速為80km/h,要到達目的地,油箱中的油是否夠用?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,直線y=-
3
x+4
3
與x軸相交于點A,與直線y=
3
x相交于點P.
(1)求點P的坐標;
(2)請判斷△OPA的形狀并說明理由;
(3)動點E從原點O出發(fā),以每秒1個單位的速度沿著O、P、A的路線向點A勻速運動(E不與點O,A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B,設運動t秒時,矩形EBOF與△OPA重疊部分的面積為S.
求:①S與t之間的函數(shù)關系式.②當t為何值時,S最大,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一次函數(shù)的圖象經(jīng)過A(1,-1)和B(2,2).
(1)求出這個函數(shù)的關系式并畫出圖象;
(2)已知直線AB上一點C到y(tǒng)軸的距離為3,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線y=
1
2
x+5
與x軸,y軸分別交于A,B兩點,點M為直線AB上一個動點,點N在x軸上方的坐標平面內(nèi),若以M,N,O,B為頂點的四邊形是菱形,則N的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

通海大市場某水果批發(fā)商引進一種臺灣水果,若進貨成本是每噸0.5萬元,這種水果市場上的銷售量y(噸)與每噸的銷售價x(萬元)的一次函數(shù)圖象如圖.若銷售價為每噸2萬元,則銷售利潤為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知在直角坐標系中,A(0,2),F(xiàn)(-3,0),D為x軸上一動點,過點F作直線AD的垂線FB,交y軸于B,點C(2,
5
2
)為定點,在點D移動的過程中,如果以A,B,C,D為頂點的四邊形是梯形,則點D的坐標為______.

查看答案和解析>>

同步練習冊答案