【題目】如圖,等腰中,,點(diǎn)、分別在邊、的延長(zhǎng)線上,,過(guò)點(diǎn)于點(diǎn),交于點(diǎn).

1)若,求的度數(shù);

2)若.求證:.

【答案】1;(2)見(jiàn)解析

【解析】

1)在△CDE中根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理得到∠ECD的度數(shù).在△ACD中,根據(jù)三角形外角的性質(zhì)即可得出結(jié)論;

2)在△CDE中,根據(jù)等腰三角形的性質(zhì)得到∠ECD=CED,進(jìn)而得到∠ECD+CDB=90°.由∠ECD+DCB=90°,得到∠DCB=BDC.由∠DCB+BDC=ABC=45°,得到∠DCB=BDC=22.5°,得到∠ECD=CED=67.5°,得到∠EDC=45°.由EFDC于點(diǎn)F,得到∠DEF=EDC=45°,即有EF=DF,∠EDG=EGD=67.5°,根據(jù)等角對(duì)等邊得到EG=ED,等量代換得到EG=DC,即可得到結(jié)論.

∵等腰中,,

又∵CD=DE,

,

2)∵CD=DE,

又∵

,

,

于點(diǎn),

,

,

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線和x軸交于兩點(diǎn)A、B,和y軸交于點(diǎn)C,已知A、B兩點(diǎn)的橫坐標(biāo)分別為﹣1,4,ABC是直角三角形,∠ACB=90°,則此拋物線頂點(diǎn)的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BAD是由BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且ABBC,BE=CE,連接DE.

(1)求證:BDE≌△BCE;

(2)試判斷四邊形ABED的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCDAB=2AD,點(diǎn)A01),點(diǎn)CD在反比例函數(shù)k0)的圖象上,ABx軸的正半軸相交于點(diǎn)EEAB的中點(diǎn),k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018中國(guó)重慶開州漢豐湖國(guó)際摩托艇公開賽第二年舉辦.鄰近區(qū)縣一旅行社去年組團(tuán)觀看比賽,全團(tuán)共花費(fèi)9600.今年賽事宣傳工作得力,該旅行社繼續(xù)組團(tuán)前來(lái)觀看比賽,人數(shù)比去年增加了,總費(fèi)用增加了3900元,人均費(fèi)用反而下降了20.

1)求該旅行社今年有多少人前來(lái)觀看賽事?

2)今年該旅行社本次費(fèi)用中,其它費(fèi)用不低于交通費(fèi)的2倍,求人均交通費(fèi)最多為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).

(1)求證:△ADE≌△CBF;

(2)求證:四邊形BFDE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B(3,3)在雙曲線y=(x>0)上,點(diǎn)D在雙曲線(x<0)上,點(diǎn)A和點(diǎn)C分別在x軸,y軸的正半軸上,DMx軸于M,BNx軸于N,且點(diǎn)A、 B、 C、D構(gòu)成的四邊形為正方形.

(1)k的值為___;

(2)求證:△ADM≌△BAN;

(3)求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.

求實(shí)數(shù)的取值范圍;

是否存在實(shí)數(shù),使方程的兩個(gè)實(shí)數(shù)根之和等于兩實(shí)數(shù)根之積的算術(shù)平方根?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.

(1)求二次函數(shù)的表達(dá)式;

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問(wèn)點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),MNB面積最大,試求出最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案