(2009•涼山州)分解因式:9a-a3=    ,2x2-12x+18=   
【答案】分析:觀察原式9a-a3,找到公因式a后,發(fā)現(xiàn)9-a2符合平方差公式的形式,直接運用公式可得;
觀察原式2x2-12x+18,找到公因式2后,發(fā)現(xiàn)x2-6x+9符合完全平方差公式的形式,直接運用公式可得.
解答:解:9a-a3=a(9-a2)=a(3+a)(3-a);
2x2-12x+18=2(x2-6x+9)=2(x-3)2
點評:本題考查整式的因式分解.一般地,因式分解有兩種方法,提公因式法,公式法,能提公因式先提公因式,然后再考慮公式法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2009•涼山州)如圖,已知拋物線y=x2+bx+c經(jīng)過A(1,0),B(0,2)兩點,頂點為D.
(1)求拋物線的解析式;
(2)將△OAB繞點A順時針旋轉(zhuǎn)90°后,點B落到點C的位置,將拋物線沿y軸平移后經(jīng)過點C,求平移后所得圖象的函數(shù)關(guān)系式;
(3)設(shè)(2)中平移后,所得拋物線與y軸的交點為B1,頂點為D1,若點N在平移后的拋物線上,且滿足△NBB1的面積是△NDD1面積的2倍,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2009•涼山州)如圖,在平面直角坐標系中,點O1的坐標為(-4,0),以點O1為圓心,8為半徑的圓與x軸交于A,B兩點,過A作直線l與x軸負方向相交成60°的角,且交y軸于C點,以點O2(13,5)為圓心的圓與x軸相切于點D.
(1)求直線l的解析式;
(2)將⊙O2以每秒1個單位的速度沿x軸向左平移,當⊙O2第一次與⊙O1外切時,求⊙O2平移的時間.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前30天沖刺得分專練8:二次函數(shù)(解析版) 題型:解答題

(2009•涼山州)如圖,已知拋物線y=x2+bx+c經(jīng)過A(1,0),B(0,2)兩點,頂點為D.
(1)求拋物線的解析式;
(2)將△OAB繞點A順時針旋轉(zhuǎn)90°后,點B落到點C的位置,將拋物線沿y軸平移后經(jīng)過點C,求平移后所得圖象的函數(shù)關(guān)系式;
(3)設(shè)(2)中平移后,所得拋物線與y軸的交點為B1,頂點為D1,若點N在平移后的拋物線上,且滿足△NBB1的面積是△NDD1面積的2倍,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學模擬試卷13(黨灣鎮(zhèn)中 葉菁)(解析版) 題型:解答題

(2009•涼山州)如圖,已知拋物線y=x2+bx+c經(jīng)過A(1,0),B(0,2)兩點,頂點為D.
(1)求拋物線的解析式;
(2)將△OAB繞點A順時針旋轉(zhuǎn)90°后,點B落到點C的位置,將拋物線沿y軸平移后經(jīng)過點C,求平移后所得圖象的函數(shù)關(guān)系式;
(3)設(shè)(2)中平移后,所得拋物線與y軸的交點為B1,頂點為D1,若點N在平移后的拋物線上,且滿足△NBB1的面積是△NDD1面積的2倍,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年四川省涼山州中考數(shù)學試卷(解析版) 題型:解答題

(2009•涼山州)如圖,在平面直角坐標系中,點O1的坐標為(-4,0),以點O1為圓心,8為半徑的圓與x軸交于A,B兩點,過A作直線l與x軸負方向相交成60°的角,且交y軸于C點,以點O2(13,5)為圓心的圓與x軸相切于點D.
(1)求直線l的解析式;
(2)將⊙O2以每秒1個單位的速度沿x軸向左平移,當⊙O2第一次與⊙O1外切時,求⊙O2平移的時間.

查看答案和解析>>

同步練習冊答案