填空,完成下列證明過程.
如圖,△ABC中,∠B=∠C,D,E,F(xiàn)分別在AB,BC,AC上,且BD=CE,∠DEF=∠B
求證:ED=EF.
證明:∵∠DEC=∠B+∠BDE
三角形的一個外角等于與它不相鄰兩個內(nèi)角的和
三角形的一個外角等于與它不相鄰兩個內(nèi)角的和
,
又∵∠DEF=∠B(已知),∴∠
BDE
BDE
=∠
CEF
CEF
(等式性質(zhì)).
在△EBD與△FCE中,
BDE
BDE
=∠
CEF
CEF
(已證),
BD
BD
=
CE
CE
(已知),∠B=∠C(已知),
∴△EBD≌△FCE
ASA
ASA

∴ED=EF
全等三角形對應邊相等
全等三角形對應邊相等
分析:首先根據(jù)三角形的外角等于與它不相鄰的兩個內(nèi)角的和可得∠DEC=∠B+∠BDE,再由條件∠DEF=∠B可得∠BDE=∠CEF,再加上條件BD=CE,∠B=∠C可利用ASA證明
△EBD≌△FCE再根據(jù)全等三角形對應邊相等可得ED=EF.
解答:證明:∵∠DEC=∠B+∠BDE (三角形的一個外角等于與它不相鄰兩個內(nèi)角的和),
又∵∠DEF=∠B(已知),
∴∠BDE=∠CEF (等式性質(zhì)).
在△EBD與△FCE中,
∠BDE=∠CEF(已知)
BD=CE(已知)
∠B=∠C(已知)

∴△EBD≌△FCE(ASA)
∴ED=EF (全等三角形對應邊相等).
點評:此題主要考查了全等三角形的判定與性質(zhì),關鍵是掌握兩個三角形全等的判定定理:SSS、ASA、SAS、AAS.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、填空,完成下列證明過程.
如圖,△ABC中,∠B=∠C,D,E,F(xiàn)分別在AB,BC,AC上,且BD=CE,∠DEF=∠B,
求證:ED=EF.
證明:∵∠DEC=∠B+∠BDE(
三角形的一個外角等于與它不相鄰兩個內(nèi)角的和
),
又∵∠DEF=∠B(已知),
∴∠
BDE
=∠
CEF
(等式性質(zhì)).
在△EBD與△FCE中,
BDE
=∠
CEF
(已證),
BD
=
CE
(已知),
∠B=∠C(已知),
∴△EBD≌△FCE(ASA).
∴ED=EF(全等三角形的對應邊相等).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)填空,完成下列證明過程.
如圖,如果△ABC≌△A1B1C1,AD平分∠BAC,A1D1平分∠B1A1C1,那么AD=A1D1
證明:∵△ABC≌△A1B1C1(已知)
 
=
 

∠B=∠B1
 
=∠
 

又∵AD平分∠BAC,A1D1平分∠B1A1C1
∴∠BAD=
1
2
∠BAC∠B1A1D1=
1
2
∠B1A1C1
∴∠
 
=∠
 

在△ABD與△A1B1D1
 

∴△ABD≌△A1B1D1
 

∴AD=A1D1
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

填空,完成下列證明過程.
如圖,△ABC中,∠B=∠C,D,E,F(xiàn)分別在AB,BC,AC上,且BD=CE,∠DEF=∠B,
求證:ED=EF.
證明:∵∠DEC=∠B+∠BDE(________),
又∵∠DEF=∠B(已知),
∴∠________=∠________(等式性質(zhì)).
在△EBD與△FCE中,
∠________=∠________(已證),
________=________(已知),
∠B=∠C(已知),
∴△EBD≌△FCE(ASA).
∴ED=EF(全等三角形的對應邊相等).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

填空,完成下列證明過程.
如圖,△ABC中,∠B=∠C,D,E,F(xiàn)分別在AB,BC,AC上,且BD=CE,∠DEF=∠B
求證:ED=EF.
證明:∵∠DEC=∠B+∠BDE________,
又∵∠DEF=∠B(已知),∴∠________=∠________(等式性質(zhì)).
在△EBD與△FCE中,
∠________=∠________(已證),________=________(已知),∠B=∠C(已知),
∴△EBD≌△FCE________.
∴ED=EF________.

查看答案和解析>>

同步練習冊答案