【題目】已知四邊形和四邊形都是正方形,且

1)如圖1,連接、.求證:

2)如圖2,如果正方形繞點旋轉(zhuǎn)到某一位置恰好使得,

①求的度數(shù);

②若正方形的邊長是,請求出的面積.

【答案】1)證明見解析;(2)①;②

【解析】

1)先求出△BCG≌△ECGSAS),得出BGDE

2)求出△BCG≌△BCE,得出DEBDBE,所以△BDE是等邊三角形.從而得出∠BDE60°;

3)連接,證明,得到所以為等邊三角形,由,可得即可求解.

1四邊形是正方形

,

2)連接

,

是等邊三角形

3)連接,同理可得

,

所以為等邊三角形

由已知,可得

所以

所以的面積是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)新舊動能轉(zhuǎn)換.提高公司經(jīng)濟效益.某科技公司近期研發(fā)出一種新型高科技設(shè)備,每臺設(shè)備成本價為30萬元,經(jīng)過市場調(diào)研發(fā)現(xiàn),每臺售價為40萬元時,年銷售量為600;每臺售價為45萬元時,年銷售量為550.假定該設(shè)備的年銷售量y(單位:)和銷售單價(單位:萬元)成一次函數(shù)關(guān)系.

(1)求年銷售量與銷售單價的函數(shù)關(guān)系式;

(2)根據(jù)相關(guān)規(guī)定,此設(shè)備的銷售單價不得高于70萬元,如果該公司想獲得10000萬元的年利潤.則該設(shè)備的銷售單價應(yīng)是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點分別是A(-3,2),B0,4),C0,2).

1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的C;平移△ABC,若A的對應(yīng)點的坐標(biāo)為(04),畫出平移后對應(yīng)的

2)若將C繞某一點旋轉(zhuǎn)可以得到,請直接寫出旋轉(zhuǎn)中心的坐標(biāo);

3)在軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸、軸分別相交于、兩點,點的中點,點、分別為線段、上的動點,將沿折疊,使點的對稱點恰好落在線段上(不與端點重合).連接分別交、于點、,連接.

1)求的值;

2)試判斷的位置關(guān)系,并加以證明;

3)若,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=4,O為矩形ABCD的中心,以D為圓心1為半徑作⊙D,P為⊙D上的一個動點,連接AP、OP,則△AOP面積的最大值為( 。

A. 4 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)生創(chuàng)業(yè)團隊抓住商機,購進一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量(袋與銷售單價(元之間滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如表所示,其中3.5≤x≤5.5.另外每天還需支付其他各項費用80元.

銷售單價(

3.5

5.5

銷售量(

280

120

1)請求出之間的函數(shù)關(guān)系式;

2)設(shè)每天的利潤為元,當(dāng)銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)在一次社會實踐活動中,通過對某種蔬菜在1月份至7月份的市場行情進行統(tǒng)計分析后得出如下規(guī)律:

①該蔬菜的銷售價(單位:元/千克)與時間(單位:月份)滿足關(guān)系 ;

②該蔬菜的平均成本(單位:元/千克)與時間(單位:月份)滿足二次函數(shù)關(guān)系已知4月份的平均成本為2/千克,6月份的平均成本為1/千克.

1)求該二次函數(shù)的解析式;

2)請運用小明統(tǒng)計的結(jié)論,求出該蔬菜在第幾月份的平均利潤(單位:元/千克)最大?最大平均利潤是多少?(注:平均利潤銷售價平均成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程

1)求證:無論為何值,方程總有實數(shù)根.

2)設(shè),是方程的兩個根,記S的值能為2嗎?若能,求出此時的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C90°,DBC邊上一動點,過DDEADABE,AC2,BC4,當(dāng)D點從C點運動到B點時,點E運動的路徑長為_____

查看答案和解析>>

同步練習(xí)冊答案