已知:二次函數(shù)y=-x2+2x+3
(1)用配方法將函數(shù)關(guān)系式化為y=a(x-h)2+k的形式,并指出函數(shù)圖象的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(2)畫出所給函數(shù)的圖象;
(3)觀察圖象,指出使函數(shù)值y>3的自變量x的取值范圍.

【答案】分析:(1)利用配方法先提出二次項(xiàng)系數(shù),再加上一次項(xiàng)系數(shù)的一半的平方來(lái)湊完全平方式,把一般式轉(zhuǎn)化為頂點(diǎn)式.
(2)根據(jù)對(duì)稱軸,頂點(diǎn)坐標(biāo),拋物線與y軸的交點(diǎn)畫出圖象;
(3)根據(jù)圖象直接回答問(wèn)題.
解答:解:(1)y=-x2+2x+3=-(x2-2x)+3=-(x-1)2+4,即y=-(x-1)2+4,該拋物線的對(duì)稱軸是x=1,頂點(diǎn)坐標(biāo)是(1,-4);

(2)由拋物線解析式y(tǒng)=-x2+2x+3知,該拋物線的開口方向向下,且與y軸的交點(diǎn)是(0,3).
∵y=-x2+2x+3=-(x+1)(x-3),
∴該拋物線與x軸的兩個(gè)交點(diǎn)橫坐標(biāo)分別是-1、3.
又由(1)知,該拋物線的對(duì)稱軸是x=1,頂點(diǎn)坐標(biāo)是(1,-4);
所以其圖象如圖所示:

(3)根據(jù)圖象知,當(dāng)y>3時(shí),0<x<2.
點(diǎn)評(píng):二次函數(shù)的解析式有三種形式:
(1)一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù));
(2)頂點(diǎn)式:y=a(x-h)2+k;
(3)交點(diǎn)式(與x軸):y=a(x-x1)(x-x2).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:二次函數(shù)的表達(dá)式為y=2x2+4x-1.
(1)設(shè)這個(gè)函數(shù)圖象的頂點(diǎn)坐標(biāo)為P,與y軸的交點(diǎn)為A,求P、A兩點(diǎn)的坐標(biāo);
(2)將二次函數(shù)的圖象向上平移1個(gè)單位,設(shè)平移后的圖象與x軸的交點(diǎn)為B、C(其中點(diǎn)B在點(diǎn)C的左側(cè)),求B、C兩點(diǎn)的坐標(biāo)及tan∠APB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A的坐標(biāo)是(-2,0),點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(zhǎng)(OC<OB)是方程x2-10x+24=0的兩個(gè)根.
(1)求B、C兩點(diǎn)的坐標(biāo);
(2)求這個(gè)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:二次函數(shù)y=x2-2(m-1)x-1-m的圖象與x軸交于A(x1,0)、B(x2,0),x1<0<x2,與y軸交于點(diǎn)C,且滿足
1
AO
-
1
OB
=
2
CO

(1)求這個(gè)二次函數(shù)的解析式;
(2)是否存在著直線y=kx+b與拋物線交于點(diǎn)P、Q,使y軸平分△CPQ的面積?若存在,求出k、b應(yīng)滿足的條件;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-3,0),與y軸精英家教網(wǎng)交于點(diǎn)C,點(diǎn)D(-2,-3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,求出PA+PD的最小值;
(3)點(diǎn)G拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)E,使B、D、E、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的E點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:二次函數(shù)y=ax2+bx+c(a≠0)中的x和y滿足下表:
x 0 1 2 3 4 5
y 3 0 -1 0 m 8
(1)可求得m的值為
3
3
;
(2)求出這個(gè)二次函數(shù)的解析式;
(3)當(dāng)0<x<3時(shí),則y的取值范圍為
-1≤y<3
-1≤y<3

查看答案和解析>>

同步練習(xí)冊(cè)答案