己知:如圖,⊙O與內(nèi)切于點B,BC是⊙O的直徑,BC=6,BF為的直徑,BF=4,⊙O的弦BA交于點D,連接DF、AC、CD.(1)求證:DF∥AC;(2)當∠ABC等于多少度時,CD與相切?并證明你的結論.(3)在(2)的前提下,連接FA交CD于點E,求AF、EF的長.

答案:
解析:

  (1)BC是⊙O的直徑,BF是⊙的直徑,

  ∴∠BDF=∠BAC,

  ∴DFAC

  (2)當∠ABC時,CD與⊙相切.

  連接,∵⊙的直徑BF4,

  ⊙O的直徑BC6,

  ∴FC2

  在RtBFD中,由BF4,∠ABC

  ∴DF2,∴DFFC2

  ∴為直角三角形,

  ∴

  又∵點D在⊙上,

  ∴CD與⊙相切.

  (3)RtABC中,∠ABC,BC6,∴AC3,AB3

  在RtDBF中,∠ABC,BF4,

  ∴DF2,BD2,∴AD

  在RtADF中,

  AF

  ∵DFAC,∴

  ∴,

  ∴EFAF


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,己知點P是x軸上一點,以P為圓心的⊙P分別與x軸、y軸交于點A、B和C、精英家教網(wǎng)D,其中A(-3,0),B(1,0).過點C作⊙P的切線交x軸于點E.
(1)求直線CE的解析式;
(2)求過A、B、C三點的拋物線解析式;
(3)第(2)問中的拋物線的頂點是否在直線CE上,請說明理由;
(4)點F是線段CE上一動點,點F的橫坐標為m,問m在什么范圍內(nèi)時,直線FB與⊙P相交?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

己知如圖,正△ABC的邊長為2,B,C在x軸的正半軸上,A在第一象限,直線y=
1
2
x+
3
-1
經(jīng)過A精英家教網(wǎng)點,以BC為直徑的⊙M交AB于E.
(1)求A點的坐標;
(2)求證:OE與⊙M相切;
(3)試各寫出一個頂點在⊙M內(nèi)、⊙M上、⊙M外,且經(jīng)過B、C兩點的拋物線的解析式.(只需寫出解析式,不需書寫求解過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某單位為了響應政府發(fā)出的“全民健身”的號召,打算在長和寬分別為20米和16米的矩形大廳內(nèi)修建一個40平方米的矩形健身房ABCD,該健身房的四面墻壁中有兩面沿用大廳的舊墻壁(如圖為平面示意圖),且每面舊墻壁上所沿用的舊墻壁長度不得超過其長度的一半,己知裝修舊墻壁精英家教網(wǎng)的費用為20元/平方米,新建(含裝修)墻壁的費用為80元/平方米,設健身房高3米,健身房AB的長為x米,BC的長為y米,修建健身房墻壁的總投資為w元.
(1)求y與x的函數(shù)關系式,并寫出自變量x的范圍.
(2)求w與x的函數(shù)關系,并求出當所建健身房AB長為8米時總投資為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:2005年甘肅省隴南市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2005•天水)如圖所示,己知點P是x軸上一點,以P為圓心的⊙P分別與x軸、y軸交于點A、B和C、D,其中A(-3,0),B(1,0).過點C作⊙P的切線交x軸于點E.
(1)求直線CE的解析式;
(2)求過A、B、C三點的拋物線解析式;
(3)第(2)問中的拋物線的頂點是否在直線CE上,請說明理由;
(4)點F是線段CE上一動點,點F的橫坐標為m,問m在什么范圍內(nèi)時,直線FB與⊙P相交?

查看答案和解析>>

同步練習冊答案