如圖,拋物線y=ax2-3ax+b經(jīng)過A(-1,0),C(3,-2)兩點,與y軸交于點D,與x軸交于另一點B.
(1)求此拋物線的解析式;
(2)利用配方法求此拋物線的頂點式;
(3)若直線y=kx+1(k≠0)將四邊形ABCD面積二等分,求k的值.
分析:(1)將A、B兩點的坐標代入拋物線y=ax2-3ax+b中,通過解方程組即可求出待定系數(shù)的值.
(2)將(1)的拋物線解析式配方成y=a(x-k)2+b的形式即可.
(3)直線y=kx+1必過(0,1)點,由圖可以看出若該直線平分四邊形ADCB的面積,那么必須經(jīng)過線段AB和CD;而點A、B和點D、C分別關(guān)于拋物線對稱軸對稱,那么四邊形ADCB必為等腰梯形,拋物線對稱軸正好可以將等腰梯形ADCB二等分(設(shè)拋物線與梯形上、下底的交點分別為E、F,設(shè)線段EF的中點為G),所以直線y=kx+1必須經(jīng)過點G(此時該直線與梯形上下底、拋物線對稱軸構(gòu)建的兩個三角形正好全等)才能使得四邊形ADCB的面積二等分,所以先求出G點的坐標再代入直線的解析式中即可解出k的值.
解答:解:(1)將A(-1,0),C(3,-2)代入拋物線y=ax2-3ax+b中,得:
a+3a+b=0
9a-9a+b=-2
,解得
a=
1
2
b=-2

故拋物線的解析式:y=
1
2
x2-
3
2
x-2.

(2)由(1)知:y=
1
2
x2-
3
2
x-2=
1
2
(x2-3x+
9
4
)-
1
2
×
9
4
-2=
1
2
(x-
3
2
2-
25
8


(3)由圖知,A、B以及C、D關(guān)于拋物線對稱軸對稱,則四邊形ADCB是等腰梯形,且B(4,0)、D(0,-2);
直線y=kx+1過(0,1),若該直線能將四邊形ADCB的面積二等分,則該直線必過梯形的上下底;
取等腰梯形ADCB的上、下底的中點E、F,取線段EF的中點G,如右圖;
則E(
3
2
,-2)、F(
3
2
,0)、G(
3
2
,-1);
∵AB∥CD,
∴∠FNG=∠EMG,
又∵∠FGN=∠EGM,且FG=GE,
∴△FGN≌△EGM,即S△FNG=S△EMG;
易知,S梯形AFED=S梯形BFEC,則:S四邊形ANMD=S四邊形BNMC
因此,若直線y=kx+1將四邊形ADCB的面積二等分,那么該直線必過點G,有:
3
2
k+1=-1,
解得:k=-
4
3
點評:此題主要考查了二次函數(shù)解析式的確定以及等腰梯形面積等分線的問題;最后一題的難度較大,找出直線必過的一個定點是解答題目的關(guān)鍵所在.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊答案