【題目】若方程(a-2x+ax-3=0是關(guān)于x的一元二次方程,則a的取值范圍是( ).

A.a2a2B.a0a2C.a2D.a2

【答案】D

【解析】

根據(jù)一元二次方程的定義得到a-2≠0,由此求得a的取值范圍.

解:依題意得:a-2≠0,
解得a≠2
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請寫出一個一元一次不等式,使它的解集為x2,那么這個不等式可以是________(未知數(shù)的系數(shù)不能為1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次函數(shù)y=(k﹣2)x﹣ 中,y隨x的增大而增大,則k的可能值為( )
A.1
B.
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】廣州亞運(yùn)會中,志愿者們手上、脖子上的絲巾非常美麗,車間70名工人承接了生產(chǎn)絲巾的任務(wù),已知每人每天平均生產(chǎn)手上的絲巾1800條或脖子上的絲巾1200條,一條脖子上的絲巾要配兩條手上的絲巾,為了使每天生產(chǎn)的絲巾正好配套,應(yīng)分配多少名工人生產(chǎn)脖子上的絲巾,多少名工人生產(chǎn)手上的絲巾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上原點以及原點左邊的數(shù)表示(
A.零和正數(shù)
B.正數(shù)
C.負(fù)數(shù)
D.零和負(fù)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分別是AE、CD的中點.
(1)求證:△ABE≌△DBC;
(2)判定△BMN的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點,點C的坐標(biāo)是(8,4),連接AC,BC.

(1)求過O,A,C三點的拋物線的解析式,并判斷△ABC的形狀;

(2)動點P從點O出發(fā),沿OB以每秒2個單位長度的速度向點B運(yùn)動;同時,動點Q從點B出發(fā),沿BC以每秒1個單位長度的速度向點C運(yùn)動.規(guī)定其中一個動點到達(dá)端點時,另一個動點也隨之停止運(yùn)動.設(shè)運(yùn)動時間為t秒,當(dāng)t為何值時,PA=QA?

(3)在拋物線的對稱軸上,是否存在點M,使以A,B,M為頂點的三角形是等腰三角形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線l與拋物線相交于A(1,),B(4,0)兩點.

(1)求出拋物線的解析式;

(2)在坐標(biāo)軸上是否存在點D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點D的坐標(biāo);若不存在,說明理由;

(3)點P是線段AB上一動點,(點P不與點A、B重合),過點P作PM∥OA,交第一象限內(nèi)的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,若△BCN、△PMN的面積S△BCN、S△PMN滿足S△BCN=2S△PMN,求出的值,并求出此時點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,P(﹣1,3)關(guān)于原點的對稱點Q的坐標(biāo)是(  )

A.1,3B.(﹣1,3C.1,﹣3D.(﹣1,﹣3

查看答案和解析>>

同步練習(xí)冊答案