已知關(guān)于的方程.

(1)求證:方程總有兩個(gè)實(shí)數(shù)根;

(2)若方程有一個(gè)根大于4且小于8,求m的取值范圍;

(3)設(shè)拋物線軸交于點(diǎn)M,若拋物線與x軸的一個(gè)交點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)恰好是點(diǎn)M,求的值.

 

【答案】

證明:(1),

所以方程總有兩個(gè)實(shí)數(shù)根.     ……………………………2分

解:(2)由(1),根據(jù)求根公式可知,

    方程的兩根為:

即:,,

        由題意,有,即.…………………………5分

(3)易知,拋物線與y軸交點(diǎn)為M(0,),由(2)可知拋物線與x軸的

交點(diǎn)為(1,0)和(,0),它們關(guān)于直線的對(duì)稱點(diǎn)分別為(0,)和(0, ),

由題意,可得:

,即.……………………7分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于的方程x2+kx-3=0有一根為-3,則另一根為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于的方程
x+a
x-3
=-1
有正根,則實(shí)數(shù)a的取值范圍是( 。
A、a<0且a≠-3
B、a>0
C、a<-3
D、a<3且a≠-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于的方程x2+ax+b=0(b≠0)與x2+cx+d=0都有實(shí)數(shù)根,若這兩個(gè)方程有且只有一個(gè)公共根,且ab=cd,則稱它們互為“同根輪換方程”.如x2-x-6=0與x2-2x-3=0互為“同根輪換方程”.
(1)若關(guān)于x的方程x2+4x+m=0與x2-6x+n=0互為“同根輪換方程”,求m的值;
(2)若p是關(guān)于x的方程x2+ax+b=0(b≠0)的實(shí)數(shù)根,q是關(guān)于x的方程x2+2ax+
1
2
b=0
的實(shí)數(shù)根,當(dāng)p、q分別取何值時(shí),方程x2+ax+b=0(b≠0)與x2+2ax+
1
2
b=0
互為“同根輪換方程”,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆河南省周口市初三下學(xué)期第二十八章二次函數(shù)圖像與性質(zhì)檢測(cè)題 題型:解答題

已知關(guān)于的方程.

(1)求證:方程總有兩個(gè)實(shí)數(shù)根;
(2)若方程有一個(gè)根大于4且小于8,求m的取值范圍;
(3)設(shè)拋物線軸交于點(diǎn)M,若拋物線與x軸的一個(gè)交點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)恰好是點(diǎn)M,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年人教版初中數(shù)學(xué)九年級(jí)上22.1一元二次方程練習(xí)卷(解析版) 題型:解答題

已知關(guān)于的方程

⑴  若方程有兩個(gè)相等的實(shí)數(shù)根,求的值,并求出此時(shí)方程的根(6分)

⑵  是否存在正數(shù),使方程的兩個(gè)實(shí)數(shù)根的平方和等于224 ?若存在,求出滿足條件的的值; 若不存在,請(qǐng)說明理由。(6分)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案