16.為便于管理與場地安排,松北某中學(xué)校以小明所在班級為例,對學(xué)生參加各個體育項(xiàng)目進(jìn)行了調(diào)查統(tǒng)計(jì).并把調(diào)查的結(jié)果繪制了如圖所示的不完全統(tǒng)計(jì)圖,請你根據(jù)下列信息回答問題:

(1)在這次調(diào)查中,小明所在的班級參加籃球項(xiàng)目的同學(xué)有多少人?并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)如果學(xué)校有800名學(xué)生,請估計(jì)全校學(xué)生中有多少人參加籃球項(xiàng)目.

分析 (1)根據(jù)跳繩人數(shù)除以跳繩人數(shù)所占的百分比,可得抽查總?cè)藬?shù),根據(jù)有理數(shù)的減法,可得參加籃球項(xiàng)目的人數(shù),根據(jù)參加籃球項(xiàng)目的人數(shù),可得答案;
(2)根據(jù)全校學(xué)生人數(shù)乘以參加籃球項(xiàng)目所占的百分比,可得答案.

解答 解:(1)抽查總?cè)藬?shù)是:20÷40%=50(人),
參加籃球項(xiàng)目的人數(shù)是:50-20-10-15=5(人),
即小明所在的班級參加籃球項(xiàng)目的同學(xué)有5人,
補(bǔ)全條形圖如下:


(2)800×$\frac{5}{50}$=80(人).
答:估計(jì)全校學(xué)生中大約有80人參加籃球項(xiàng)目.

點(diǎn)評 本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大。部疾榱死脴颖竟烙(jì)總體.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.某校為了研究中學(xué)生是否應(yīng)該帶手機(jī)到學(xué)校,現(xiàn)在委托學(xué)生會對該校在校使用手機(jī)的主要用途進(jìn)行調(diào)查統(tǒng)計(jì).經(jīng)統(tǒng)計(jì)整理,繪制成不完整的條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖如下,請回答下列問題:
(1)本次共調(diào)查了多少人?
(2)計(jì)算學(xué)生在校使用手機(jī)的主要用途為其它的人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)計(jì)算扇形統(tǒng)計(jì)圖中學(xué)生在校使用手機(jī)的主要用途為家校聯(lián)系的圓心角的度數(shù);
(4)該校共3000名學(xué)生,請估計(jì)該校使用手機(jī)的主要用途為上網(wǎng)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.下列說法中正確的有②④. (把所有正確的序號都填到空里)
①角平分線上任意一點(diǎn)到角的兩邊的線段長相等
②角是軸對稱圖形
③線段不是軸對稱圖形
④線段垂直平分線上的點(diǎn)到這條線段兩個端點(diǎn)的距離相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.解分式方程.
(1)$\frac{1-x}{x-2}$=$\frac{1}{2-x}$-2
(2)$\frac{x}{x-2}$-1=$\frac{3}{{x}^{2}-4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.若有理數(shù)a,b滿足|a-1|+(b-2)2=0,則ab=( 。
A.2B.-2C.3D.-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.計(jì)算:$\sqrt{25}$-$\root{3}{27}$+2$\sqrt{\frac{1}{4}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.已知$\frac{a}=\frac{7}{5}$,則$\frac{a-b}$的值為( 。
A.$\frac{2}{7}$B.$\frac{7}{2}$C.$\frac{5}{2}$D.$\frac{2}{5}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個交點(diǎn)在(3,0)和(4,0)之間,則下列結(jié)論:
①a-b+c>0;
②3a+b=0;
③若(-$\frac{1}{2}$,y1),($\frac{9}{4}$,y2)是拋物線上的兩點(diǎn),則y1<y2;
④一元二次方程ax2+bx+c=n-1有兩個不相等的實(shí)數(shù)根.
其中正確結(jié)論的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

6.有一組數(shù)列:-1,0,1,-1,0,1,-1,0,1,-1,0,1,…按照這個規(guī)律,那么第2017個數(shù)是-1.

查看答案和解析>>

同步練習(xí)冊答案