在△ABC中,∠BAC=90°,∠ABC=60°,AB=2,AD是BC邊上的高線,過點C,D的⊙O交AC于點E,連接BE交⊙O于點F.
(1)求BF•BE的值;
(2)設AE=x,用x的代數(shù)式表示△BDF的面積;
(3)如果△BDF的面積是數(shù)學公式,求tan∠ABE的值.

解:(1)在Rt△ABC中,AD⊥BC,由射影定理得:
BD•BC=AB2=4;
由切割線定理得:BD•BC=BF•BE,即BF•BE=4.

(2)在Rt△ABC中,AB=2,∠ABC=60°,
則:AD=,AC=2,BD=1,BC=4;
過E作EM⊥BC于M,則△CEM∽△CAD,
∴EM:AD=CE:CA=(2-x):2,
∴S△ACE:S△ABC=EM:AD=(2-x):2,
∵S△ABC=BC•AD=2,∴S△ACE=2-x;
連接DF,∵四邊形CDFE是圓的內(nèi)接四邊形,
∴∠BFD=∠C,又∵∠FBD=∠CBE,
∴△FBD∽△CBE,
=,
其中,BD2=1,BE2=4+x2,S△ACE=2-x,
∴S△BDF=

(3)當△BDF的面積是時,=,
化簡得:x2+7x-10=0,解得x=,x=-(不合題意舍去),
∴tanABE==
分析:(1)由切割線定理知:BD•BC=BF•BE,那么必須先求出BD•BC的值,在Rt△ABC中,AD⊥BC,由射影定理得:BD•BC=AB2,由此得解.
(2)過E作EM⊥BC于M,通過相似三角形△CEM、△CAD,可求得EM、AD的比例關系,而△ABC、△EBC同底不等高,它們的面積比等于高的比,即EM、AD的比,△ABC的面積易求得,即可得到△EBC的面積表達式;在Rt△BAE中,利用勾股定理易求得BE的表達式,可證△BFD∽△BCE,它們的面積比等于相似比的平方,即(BE:BD)的平方,BD的值易求得,即可得到△BDF的表達式.
(3)將△BDF的面積代入(2)題所得的代數(shù)式中,即可求出x的值,進而可在Rt△ABE中求出∠ABE的正切值.
點評:本題主要考查的是切割線定理,切線的性質(zhì)定理,勾股定理,三角函數(shù)和相似三角形的性質(zhì).難點在于第(2)問,熟練掌握三角形面積的求法是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點P從A點出發(fā),沿著AB以每秒4cm的速度向B點運動精英家教網(wǎng);同時點Q從C點出發(fā),沿CA以每秒3cm的速度向A點運動,設運動時間為x.
(1)當x為何值時,PQ∥BC;
(2)當
S△BCQ
S△ABC
=
1
3
,求
S△BPQ
S△ABC
的值;
(3)△APQ能否與△CQB相似?若能,求出AP的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中點,P是線段BM上的動點,將線段PA繞點P順時針旋轉2α得到線段PQ.
(1)若α=60°且點P與點M重合(如圖1),線段CQ的延長線交射線BM于點D,請補全圖形,并寫出∠CDB的度數(shù);

(2)在圖2中,點P不與點B,M重合,線段CQ的延長線于射線BM交于點D,猜想∠CDB的大。ㄓ煤恋拇鷶(shù)式表示),并加以證明;
(3)對于適當大小的α,當點P在線段BM上運動到某一位置(不與點B,M重合)時,能使得線段CQ的延長線與射線BM交于點D,且PQ=QD,請直接寫出α的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點P從點A出發(fā),沿AB以4cm/s的速度向點B運動,同時點Q從C點出發(fā),沿CA以3cm/s的速度向點A運動,設運動時間為x秒.
(1)當x為何值時,BP=CQ;
(2)△APQ能否與△CQB相似?若能,求出x的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•宿遷)(1)如圖1,在△ABC中,BA=BC,D,E是AC邊上的兩點,且滿足∠DBE=
1
2
∠ABC(0°<∠CBE<∠
1
2
ABC).以點B為旋轉中心,將△BEC按逆時針旋轉∠ABC,得到△BE′A(點C與點A重合,點E到點E′處)連接DE′,
求證:DE′=DE.
(2)如圖2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC邊上的兩點,且滿足∠DBE=
1
2
∠ABC(0°<∠CBE<45°).
求證:DE2=AD2+EC2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點P從點A出發(fā),沿AB以每秒4cm,的速度向點B運動,同時點Q從C點出發(fā),沿CA以3cm/s的速度向點A運動,設運動時間為x秒.
(1)當x為何值時,BP=CQ
(2)當x為何值時,PQ∥BC
(3)△APQ能否與△CQB相似?若能,求出x的值;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案