【題目】如圖,正方形ABCD 的邊長為4,E 為AB 上一點,且AE=3 ,F 為BC 邊上的一個動點,連接EF ,以EF 為邊向左側作等腰直角三角形FEG ,EG=EF,∠GEF=90°,連接AG ,則AG 的最小值為________________.
科目:初中數(shù)學 來源: 題型:
【題目】2017年3月全國兩會勝利召開,某學校就兩會期間出現(xiàn)頻率最高的熱詞:A.藍天保衛(wèi)戰(zhàn),B.不動產保護,C.經濟增速,D.簡政放權等進行了抽樣調查,每個同學只能從中選擇一個“我最關注”的熱詞,如圖是根據(jù)調查結果繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次調查中,一共調查了 名同學;
(2)條形統(tǒng)計圖中,m= ,n= ;
(3)從該校學生中隨機抽取一個最關注熱詞D的學生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD中,對角線AC和BD相交于點O,如果AC=12、BD=10、AB=m,那么m的取值范圍是( 。
A. 1<m<11 B. 2<m<22 C. 10<m<12 D. 5<m<6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,P是CD邊上一點,且AP和BP分別平分∠DAB和∠CBA,若AD=5,AP=8,則△APB的周長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(2,1),B(﹣1,1),C(﹣1,﹣3),D(2,﹣3),點P從點A出發(fā),以每秒1個單位長度的速度沿A﹣B﹣C﹣D﹣A…的規(guī)律在圖邊形ABCD的邊上循環(huán)運動,則第2019秒時點P的坐標為( 。
A. (1,1)B. (0,1)C. (﹣1,1)D. (2,﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年我市的臍橙喜獲豐收,臍橙一上市,水果店的陳老板用2400元購進一批臍橙,很快售完;陳老板又用6000元購進第二批臍橙,所購件數(shù)是第一批的2倍,但進價比第一批每件多了20元.
(1)第一批臍橙每件進價多少元?
(2)陳老板以每件120元的價格銷售第二批臍橙,售出60%后,為了盡快售完,決定打折促銷,要使第二批臍橙的銷售總利潤不少于480元,剩余的臍橙每件售價最低打幾折?(利潤=售價﹣進價)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出:將一個邊長為n(n≥2)的正三角形的三條邊n等分,連接各邊對應的等分點, 則該三角形被剖分的網(wǎng)格中的結點個數(shù)和線段數(shù)分別是多少呢?
問題探究:要研究上面的問題,我們不妨先從特例入手,進而找到一般規(guī)律
探究一:將一個邊長為2的正三角形的三條邊平分,連接各邊中點,則該三角形被剖分的網(wǎng)格中的結點個數(shù)和線段數(shù)分別是多少?
如圖1,連接邊長為2的正三角形三條邊的中點,從上往下:共有1+2+3=6個結點.邊長為1的正三角形,第一層有1個,第二層有2個,共有1+2=3個,線段數(shù)為3×3=9條;邊長為2的正三角形有1個,線段數(shù)為3條,總共有3×(1+2+1)=2×(1+2+3)=12條線段.
探究二:將一個邊長為3的正三角形的三條邊三等分,連接各邊對應的等分點,則該三角形被剖分的網(wǎng)格中的結點個數(shù)和線段數(shù)分別是多少?
如圖2,連接邊長為3的正三角形三條邊的對應三等分點,從上往下:共有1+2+3+4=10個結點.邊長為1的正三角形,第一層有1個,第二層有2個,第三層有3個,共有1+2+3=6個,線段數(shù)為3×6=18條;邊長為2的正三角形有1+2=3個,線段數(shù)為3×3=9條,邊長為3的正三角形有1個,線段數(shù)為3條,總共有3×(1+2+3+1+2+1)=3×(1+2+3+4)=30條線段.
探究三:
請你仿照上面的方法,探究將邊長為4的正三角形的三條邊四等分(圖3),連接各邊對應的等分點,該三角形被剖分的網(wǎng)格中的結點個數(shù)和線段數(shù)分別是多少?
(畫出示意圖,并寫出探究過程)
問題解決:
請你仿照上面的方法,探究將一個邊長為n(n≥2)的正三角形的三條邊n等分,連接各邊對應的等分點,則該三角形被剖分的網(wǎng)格中的結點個數(shù)和線段數(shù)分別是多少?(寫出探究過程)
實際應用:
將一個邊長為30的正三角形的三條邊三十等分,連接各邊對應的等分點,則該三角形被剖分的網(wǎng)格中的結點個數(shù)和線段數(shù)分別是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AE⊥BC,F(xiàn)G⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.
(1)求證:AB∥CD;
(2)求∠C的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com