【題目】如圖,正方形ABCD 的邊長為4,E AB 上一點,且AE=3 ,F BC 邊上的一個動點,連接EF ,以EF 為邊向左側作等腰直角三角形FEG EG=EF,∠GEF=90°,連接AG ,則AG 的最小值為________________

【答案】1

【解析】

過點GGMAB于點M,由AAS可證:MGE BEF,得GM=1,即:點G與直線AB的距離為1,進而即可得到答案.

過點GGMAB于點M,

∵以EF 為邊向左側作等腰直角三角形FEG ,EG=EF,∠GEF=90°,

∴∠MGE+MEG=MEG+BEF=90°,

∴∠MGE=BEF,

∵正方形ABCD中,∠B=GME=90°,

MGE BEFAAS),

GM=EB=AB-AE=4-3=1,

∴點G與直線AB的距離為1,

∴當AGAB時,AG 有最小值,最小值為1

故答案是:1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1解方程: 3yy﹣1=2﹣2y

2如圖,△ABC中,CD是邊AB上的高,且.求∠ACB的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年3月全國兩會勝利召開,某學校就兩會期間出現(xiàn)頻率最高的熱詞:A.藍天保衛(wèi)戰(zhàn),B.不動產保護,C.經濟增速,D.簡政放權等進行了抽樣調查,每個同學只能從中選擇一個“我最關注”的熱詞,如圖是根據(jù)調查結果繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次調查中,一共調查了  名同學;

(2)條形統(tǒng)計圖中,m=  ,n=  

(3)從該校學生中隨機抽取一個最關注熱詞D的學生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,對角線AC和BD相交于點O,如果AC=12、BD=10、AB=m,那么m的取值范圍是( 。

A. 1<m<11 B. 2<m<22 C. 10<m<12 D. 5<m<6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,P是CD邊上一點,且AP和BP分別平分∠DAB和∠CBA,若AD=5,AP=8,則△APB的周長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A21),B(﹣1,1),C(﹣1,﹣3),D2,﹣3),點P從點A出發(fā),以每秒1個單位長度的速度沿ABCDA…的規(guī)律在圖邊形ABCD的邊上循環(huán)運動,則第2019秒時點P的坐標為( 。

A. 1,1B. 0,1C. (﹣1,1D. 2,﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年我市的臍橙喜獲豐收,臍橙一上市,水果店的陳老板用2400元購進一批臍橙,很快售完;陳老板又用6000元購進第二批臍橙,所購件數(shù)是第一批的2倍,但進價比第一批每件多了20元.

1)第一批臍橙每件進價多少元?

2)陳老板以每件120元的價格銷售第二批臍橙,售出60%后,為了盡快售完,決定打折促銷,要使第二批臍橙的銷售總利潤不少于480元,剩余的臍橙每件售價最低打幾折?(利潤=售價﹣進價)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題提出:將一個邊長為nn≥2)的正三角形的三條邊n等分,連接各邊對應的等分點, 則該三角形被剖分的網(wǎng)格中的結點個數(shù)和線段數(shù)分別是多少呢?

問題探究:要研究上面的問題,我們不妨先從特例入手,進而找到一般規(guī)律

探究一:將一個邊長為2的正三角形的三條邊平分,連接各邊中點,則該三角形被剖分的網(wǎng)格中的結點個數(shù)和線段數(shù)分別是多少?

如圖1,連接邊長為2的正三角形三條邊的中點,從上往下:共有1+2+3=6個結點.邊長為1的正三角形,第一層有1個,第二層有2個,共有1+2=3個,線段數(shù)為3×3=9條;邊長為2的正三角形有1個,線段數(shù)為3條,總共有1+2+1=2×1+2+3=12條線段.

探究二:將一個邊長為3的正三角形的三條邊三等分,連接各邊對應的等分點,則該三角形被剖分的網(wǎng)格中的結點個數(shù)和線段數(shù)分別是多少?

如圖2,連接邊長為3的正三角形三條邊的對應三等分點,從上往下:共有1+2+3+4=10個結點.邊長為1的正三角形,第一層有1個,第二層有2個,第三層有3個,共有1+2+3=6個,線段數(shù)為3×6=18條;邊長為2的正三角形有1+2=3個,線段數(shù)為3×3=9條,邊長為3的正三角形有1個,線段數(shù)為3條,總共有1+2+3+1+2+1=3×1+2+3+4=30條線段.

探究三:

請你仿照上面的方法,探究將邊長為4的正三角形的三條邊四等分(圖3),連接各邊對應的等分點,該三角形被剖分的網(wǎng)格中的結點個數(shù)和線段數(shù)分別是多少?

(畫出示意圖,并寫出探究過程)

問題解決:

請你仿照上面的方法,探究將一個邊長為nn≥2)的正三角形的三條邊n等分,連接各邊對應的等分點,則該三角形被剖分的網(wǎng)格中的結點個數(shù)和線段數(shù)分別是多少?(寫出探究過程)

實際應用:

將一個邊長為30的正三角形的三條邊三十等分,連接各邊對應的等分點,則該三角形被剖分的網(wǎng)格中的結點個數(shù)和線段數(shù)分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AEBC,F(xiàn)GBC,1=2,D=3+60°,CBD=70°.

(1)求證:ABCD;

(2)求∠C的度數(shù).

查看答案和解析>>

同步練習冊答案