【題目】如圖,已知A(x,0)在x負半軸上,B(0,y)在y正半軸上,且x、y滿足+y2﹣2my+m2=0,m>0.

(1)判斷△AOB的形狀;

(2)如圖OA上一點作CD⊥ABC點,EBD的中點,連接CE、OE,試判斷CEOE的數(shù)量關(guān)系與位置關(guān)系,并說明理由;(提示:可延長OEF,使OE=EF,連接CF、DF、OC)

(3)將(2)中的△ACDA旋轉(zhuǎn)至D落在AB上(如圖),其它條件不變,(2)中結(jié)論是否成立?請證明你的結(jié)論.

【答案】(1)△AOB是等腰直角三角形,理由詳見解析;(2)CE=OE,CE⊥OE,理由詳見解析;(3)(2)中的結(jié)論仍然成立,理由詳見解析.

【解析】試題分析:(1)由算術(shù)平方根的性質(zhì)和偶次方的非負性質(zhì)求出x=my=m,得出OA=OB,即可得出結(jié)論;
(2)延長OEF,使OE=EF,連接CF、DF、OC,SAS證明△DEF≌△BEO,得出BO=DF,FDB=OBD,由SAS證明△OCA≌△FCD,得出OC=OF,OCA=FCD,進一步即可得出結(jié)論;
(3)延長OEF,使OE=EF,連接CF、DFOC,同(2)即可得出結(jié)論.

試題解析:(1)AOB是等腰直角三角形,理由如下:

A(x,0)x負半軸上,B(0,y)y正半軸上,x、y滿足

x<0,y>0,

x+m=0,ym=0,

x=my=m,

OA=OB,

∴△AOB是等腰直角三角形;

(2)CE=OE,CEOE.理由如下:

延長OEF,使OE=EF,連接CF、DFOC,如圖②所示:

EBD的中點,

DE=BE,

在△FDE和△OBE,

∴△DEF≌△BEO(SAS),

BO=DF,FDB=OBD,

FDOB

FDAO,

∵∠BAO=CDAB,

∴∠CDA==CAO=CDF,

CA=CD,

OA=OB,

OA=FD,

在△OCA和△FCD

∴△OCA≌△FCD(SAS),

OC=OF,OCA=FCD,

∴∠OCF=DCA=,

∴∠COF=

又∵OE=EF,

∴∠OCE=OCF=,

∴∠COE=ECO=,CEO=

CE=OE,CEOE

(3)(2)中的結(jié)論仍然成立.理由如下:

延長OEF,使OE=EF,連接CFDF、OC,如圖③所示:

(1)得:△DEF≌△BEO,

BO=DF,FDB=OBD

OA=FD,FDOB,

FDAO

∵∠BAO=,CDAC,CDA==CAD,

∴∠CAO=DCA==FDCCA=CD,

在△OCA和△FCD,

∴△OCA≌△FCD(SAS),

OC=OFOCA=FCD,

∴∠OCF=DCA=

∴∠COF=,

又∵OE=EF,

∴∠OCE=OCF=

∴∠COE=ECO=,CEO=

CE=OE,CEOE;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)2,3,5,4,4的中位數(shù)和平均數(shù)分別是( 。

A. 43.5 B. 43.6 C. 53.5 D. 53.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】表示“x-4的和的3的代數(shù)式為( )。

A.x+(-4) ×3B.x-(-4) ×3C.3×[x+(-4)]D.3 (x+4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】30974四舍五入,使其精確到百位,那么所得的近似數(shù)是_______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x25│x│+4=0的所有實數(shù)根的和是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的不等式(1mxm1的解集為x>﹣1,那么m的取值范圍為( 。

A. m1B. m1C. m<﹣1D. m>﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將點P(x,y)向右平移3個單位,再向上平移2個單位長度后與點Q(-1,2)重合,則點P的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級某班40名學(xué)生的數(shù)學(xué)測試成績分為5組,第1-4組的頻數(shù)分別為1210,6,8,則第5組的頻率是( 。

A.0.1B.0.2C.0.3D.0.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A(4,-3)B(4,-3)兩點的直線一定( )

A.垂直于xB.y軸相交但不平行于x

C.平行于xD.x軸、y軸都不平行

查看答案和解析>>

同步練習(xí)冊答案