直線l與⊙O有兩個公共點A,B,O到直線l的距離為5cm,AB=24cm,則⊙O的半徑是    cm.
【答案】分析:先作出圖形,利用垂徑定理構造自己三角形,然后利用勾股定理即可解答.
解答:解:如圖,
∵AB=24cm,OD⊥AB,
∴AD=BD=24×=12cm,
又∵O到直線l的距離OD=5cm,
根據(jù)勾股定理,OA===13cm.
故填空答案:13.
點評:本題涉及到垂徑定理和勾股定理,解答此類題目時一般要構造直角三角形來解答.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

探究規(guī)律:
已知,如圖1,直線m∥n,A、B為直線n上的兩點,C、P為直線m上的兩點.若A、B、C為三個定點,P為動點,則
(1)△PAB與△CAB的面積大小關系為
 

(2)請你在圖1中再畫出一個與△ABC面積相等的△DEF,并說明面積相等的理由.
解決問題:
問題1:如圖2,在?ABCD中,點P是CD上任意一點,
則S△PAB
 
S△ADP+S△BCP(填寫“>”、“<”或“=”).
問題2:如圖3,在公路旁邊,有一塊矩形的土地ABCD,其內(nèi)部有一個底面為圓形的建筑物,點O為圓心.若要將土地(不含圓形建筑物所占的面積)平均分給兩家承包,且分割線都過公路邊(AB)上一點P,請你確定點P的位置,并畫出分割線,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線MN表示一條公路,公路兩旁各有一點A、B表示村莊,要在公路旁建一個長途公交車站,使它到兩個村莊的距離最短,則車站應建在
線段AB與直線MN的交點處
線段AB與直線MN的交點處
,理由是:
兩點之間,線段最短
兩點之間,線段最短

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

探究規(guī)律:
已知,如圖1,直線m∥n,A、B為直線n上的兩點,C、P為直線m上的兩點.若A、B、C為三個定點,P為動點,則
(1)△PAB與△CAB的面積大小關系為______;
(2)請你在圖1中再畫出一個與△ABC面積相等的△DEF,并說明面積相等的理由.
解決問題:
問題1:如圖2,在?ABCD中,點P是CD上任意一點,
則S△PAB______S△ADP+S△BCP(填寫“>”、“<”或“=”).
問題2:如圖3,在公路旁邊,有一塊矩形的土地ABCD,其內(nèi)部有一個底面為圓形的建筑物,點O為圓心.若要將土地(不含圓形建筑物所占的面積)平均分給兩家承包,且分割線都過公路邊(AB)上一點P,請你確定點P的位置,并畫出分割線,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年河北省石家莊市中考數(shù)學一模試卷(解析版) 題型:解答題

探究規(guī)律:
已知,如圖1,直線m∥n,A、B為直線n上的兩點,C、P為直線m上的兩點.若A、B、C為三個定點,P為動點,則
(1)△PAB與△CAB的面積大小關系為______;
(2)請你在圖1中再畫出一個與△ABC面積相等的△DEF,并說明面積相等的理由.
解決問題:
問題1:如圖2,在?ABCD中,點P是CD上任意一點,
則S△PAB______S△ADP+S△BCP(填寫“>”、“<”或“=”).
問題2:如圖3,在公路旁邊,有一塊矩形的土地ABCD,其內(nèi)部有一個底面為圓形的建筑物,點O為圓心.若要將土地(不含圓形建筑物所占的面積)平均分給兩家承包,且分割線都過公路邊(AB)上一點P,請你確定點P的位置,并畫出分割線,說明理由.

查看答案和解析>>

同步練習冊答案