25、用四塊長為acm、寬為bcm的矩形材料(如圖1)拼成一個大矩形(如圖2)或大正方形(如圖3),中間分別空出一個小矩形A和一個小正方形B.

(1)求(如圖1)矩形材料的面積;(用含a,b的代數(shù)式表示)
(2)通過計算說明A、B的面積哪一個比較大;
(3)根據(jù)(如圖4),利用面積的不同表示方法寫出一個代數(shù)恒等式.
分析:(1)根據(jù)矩形的面積公式可得出答案.
(2)分別求出矩形的長和寬,求出正方形的邊長,從而計算出面積即可作出比較.
(3)求出新形成的矩形的長和寬,根據(jù)面積相等即可得出答案.
解答:解:(1)S=長×寬=ab;

(2)根據(jù)圖形可得:矩形的長=(2b+a),寬=a;正方形的邊長=a+b,
矩形的面積=2ab+a2,正方形的面積=a2+2ab+b2,
正方形面積-矩形的面積=b2
∴矩形的面積大;

(3)根據(jù)圖形可得:a2-b2=(a-b)(a+b).
點評:本題考查平方差公式的背景,難度不大,運用幾何直觀理解、解決平方差公式的的推導過程,通過幾何圖形之間的數(shù)量關(guān)系對平方差公式做出幾何解釋.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

25、某鎮(zhèn)正在建造的文化廣場工地上,有兩種鋪設廣場地面的材料,一種是長為acm,寬為bcm的矩形板材(如圖),另一種是邊長為ccm的正方形地磚(如圖②)
(1)用幾塊如圖②所示的正方形地磚能拼出一個新的正方形?并寫出新正方形的面積(寫出一個符合條件的答案即可);
(2)用如圖①所示的四塊矩形板材鋪成如圖③的大正方形或如圖④的大矩形,中間分別空出一個小正方形和小矩形(即圖中陰影部分);
①請用含a、b的代數(shù)式分別表示圖③和圖④中陰影部分的面積;
②試比較圖③和圖④中陰影部分的面積哪個大?大多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

28、正在改造的人行道工地上,有兩種鋪設路面材料:一種是長為acm、寬為bcm的矩形板材(如圖1),另一種是邊長為ccm的正方形地磚(如圖2).
(1)用多少塊如圖2所示的正方形地磚能拼出一個新的正方形?(只要寫出一個符合條件的答案即可),并寫出新正方形的面積;
(2)現(xiàn)用如圖1所示的四塊矩形板材鋪成一個大矩形(如圖3)或大正方形(如圖4),中間分別空出一個小矩形和一個小正方形.
①試比較中間的小矩形和中間的小正方形的面積哪個大?大多少?
②如圖4,已知大正方形的邊長比中間小正方形的邊長多20cm,面積大3200cm2.如果選用如圖2所示的正方形地磚(邊長為20cm)鋪設圖4中間的小正方形部分,那么能否做到不用切割地磚就可直接密鋪(縫隙忽略不計)呢?若能,請求出密鋪所需地磚的塊數(shù);若不能,至少要切割幾塊如圖2的地磚?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

用四塊長為acm、寬為bcm的矩形材料(如圖1)拼成一個大矩形(如圖2)或大正方形(如圖3),中間分別空出一個小矩形A和一個小正方形B.
(1)求(如圖1)矩形材料的面積;(用含a,b的代數(shù)式表示)
(2)通過計算說明A、B的面積哪一個比較大;
(3)根據(jù)(如圖4),利用面積的不同表示方法寫出一個代數(shù)恒等式.

查看答案和解析>>

科目:初中數(shù)學 來源:福建省月考題 題型:解答題

某鎮(zhèn)正在建造的文化廣場工地上,有兩種鋪設廣場地面的材料,一種是長為acm,寬為bcm的矩形板材(如圖),另一種是邊長為ccm的正方形地磚(如圖②)
(1)用幾塊如圖②所示的正方形地磚能拼出一個新的正方形?并寫出新正方形的面積(寫出一個符合條件的答案即可);
(2)用如圖①所示的四塊矩形板材鋪成如圖③的大正方形或如圖④的大矩形,中間分別空出一個小正方形和小矩形(即圖中陰影部分);①請用含a、b的代數(shù)式分別表示圖③和圖④中陰影部分的面積;②試比較圖③和圖④中陰影部分的面積哪個大?大多少?

查看答案和解析>>

同步練習冊答案