科目:初中數學 來源: 題型:
(本小題滿分8分)
某學校要在圍墻旁建一個長方形的中藥材種植實習苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD。已知木欄總長為120米,設AB邊的長為x米,長方形ABCD的面積為S平方米.
1.(1)求S與x之間的函數關系式(不要求寫出自變量x的取值范圍).當x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;
2.(2)學校計劃將苗圃內藥材種植區(qū)域設計為如圖所示的兩個相外切的等圓,其圓心分別為和,且到AB、BC、AD的距離與到CD、BC、AD的距離都相等,并要求在苗圃內藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學們參觀學習.當(l)中S取得最值時,請問這個設計是否可行?若可行,求出圓的半徑;若不可行,清說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
(本小題滿分10分)觀察思考
某種在同一平面進行傳動的機械裝置如圖1,圖2是它的示意圖.其工作原理是:滑塊Q在平直滑道l上可以左右滑動,在Q滑動的過程中,連桿PQ也隨之運動,并且
PQ帶動連桿OP繞固定點O擺動.在擺動過程中,兩連桿的接點P在以OP為半徑的⊙O上運動.數學興趣小組為進一步研究其中所蘊含的數學知識,過點O作OH ⊥l于點H,并測得
OH = 4分米,PQ = 3分米,OP = 2分米.
解決問題
1.(1)點Q與點O間的最小距離是 分米;點Q與點O間的最大距離是 分米;點Q在l上滑到最左端的位置與滑到最右端位置間的距離是 分米.
2.(2)如圖3,小明同學說:“當點Q滑動到點H的位置時,PQ與⊙O是相切的.”你認為他的判斷對嗎?為什么?
3.(3)①小麗同學發(fā)現:“當點P運動到OH上時,點P到l的距離最。笔聦嵣希存在著點P到l距離最大的位置,此時,點P到l的距離是 分米;②當OP繞點O左右擺動時,所掃過的區(qū)域為扇形,求這個扇形面積最大時圓心角的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
(本小題滿分8分)
某單位準備印制一批證書.現有兩個印刷廠可供選擇.甲廠費用分為制版費和印刷費兩部分,乙廠直接按印刷教量收取印刷費.甲、乙兩廠的印刷費用y(千元)與證書數量x(千個)的函數關系圖象分別如圖中甲、乙所示.
1.(1)請你直接寫出甲廠的制版費及與x的函數解析式.并求出其證書印刷單價.
2.(2)當印制證書8千個時.應選擇哪個印刷廠節(jié)省費用.節(jié)省費用多少元?
3.(3)如果甲廠想把8千個證書的印制工作承攬下來,在不降低制版費的前提下,每個證書最少降低多少元?
查看答案和解析>>
科目:初中數學 來源:2010年安徽省蕪湖市畢業(yè)學業(yè)考試模擬試卷數學卷 題型:解答題
(本小題滿分12分)已知:拋物線與x軸交于A、B兩點,與y軸交于點C. 其中點A在x軸的負半軸上,點C在y軸的負半軸上,線段OA、OC的長(OA<OC)是方程的兩個根,且拋物線的對稱軸是直線.
(1)求A、B、C三點的坐標;
(2)求此拋物線的解析式;
(3)若點D是線段AB上的一個動點(與點A、B不重合),過點D作DE∥BC交AC于點E,連結CD,設BD的長為m,△CDE的面積為S,求S與m的函數關系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時D點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源:2013屆度臨沂市七年級第二學期期末考試數學 題型:解答題
(本小題滿分9分,其中(1)小題4分,(2)小題5分)某商店需要購進甲、乙兩種商品共160件,其進價和售價如下表:(注:獲利=售價-進價)
(1)若商店計劃銷售完這批商品后能獲利1100元,問甲、乙兩種商品應分別購進多少件?
(2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com