精英家教網 > 初中數學 > 題目詳情
如圖1,在平面直角坐標系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點P是OA邊上的動點(與點O、A不重合).現將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當的點E,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(1)設P(x,0),E(0,y),求y關于x的函數關系式,并求y的最大值;
(2)如圖2,若翻折后點D落在BC邊上,求過點P、B、E的拋物線的函數關系式;
(3)在(2)的情況下,在該拋物線上是否存在點Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說明理由;若存在,求出點Q的坐標.

【答案】分析:(1)由已知可得OP=x,OE=y,則PA=4-x,AB=3.利用互余關系可證Rt△POE∽Rt△BPA,由相似比可得y關于x的函數關系式;
(2)此時,△PAB、△POE均為等腰直角三角形,BD=BA=3,CD=4-3=1,故P(1,0),E(0,1),B(4,3),代入拋物線解析式的一般式即可;
(3)以PE為直角邊,則點P可以作為直角頂點,此時∠EPB=90°,B點符合;點E也可以作為直角頂點,采用將直線PB向上平移過E點的方法,確定此時的直線EQ解析式,再與拋物線解析式聯立,可求點Q坐標.
解答:解:(1)由已知PB平分∠APD,PE平分∠OPF,且PD、PF重合,則∠BPE=90度.
∴∠OPE+∠APB=90°.
又∵∠APB+∠ABP=90°,
∴∠OPE=∠PBA.
∴Rt△POE∽Rt△BPA.


∴y=x(4-x)=-x2+x(0<x<4).
且當x=2時,y有最大值

(2)由已知,△PAB、△POE均為等腰直角三角形,可得P(1,0),E(0,1),B(4,3).
設過此三點的拋物線為y=ax2+bx+c,則


y=x2-x+1.

(3)由(2)知∠EPB=90°,即點Q與點B重合時滿足條件.
直線PB為y=x-1,與y軸交于點(0,-1).
將PB向上平移2個單位則過點E(0,1),
∴該直線為y=x+1.


∴Q(5,6).
故該拋物線上存在兩點Q(4,3)、(5,6)滿足條件.
點評:本題考查了二次函數解析式的確定方法,及尋找特殊三角形條件的問題,涉及相似與平移的數學方法.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

23、在數學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內畫兩條互相垂直,并且有公共原點O的數軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設垂足N,P在各自數軸上所表示的數分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作
(2,2)

查看答案和解析>>

科目:初中數學 來源: 題型:

在平面直角坐標系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標為(-3,0).
(1)點A的坐標為
(-3,2
2
(-3,2
2
,點B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點O為頂點且過點A的拋物線的解析式;
(3)現三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數學 來源:同步輕松練習 八年級 數學 上 題型:059

學校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據表中的數據,將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應各點.

(3)請你猜一猜上述各點會在某一個函數圖象上嗎?如果在某一函數圖象上,求出該函數的解析式,并利用你探求的結果,求出當n=10時,s的值.

查看答案和解析>>

科目:初中數學 來源:2013-2014學年北京海淀區(qū)九年級第一學期期中測評數學試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對稱問題時發(fā)現:

如圖1,當點為旋轉中心時,點繞著點旋轉180°得到點,點再繞著點旋轉180°得到點,這時點與點重合.

如圖2,當點、為旋轉中心時,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,小明發(fā)現P、兩點關于點中心對稱.

(1)請在圖2中畫出點、, 小明在證明P、兩點關于點中心對稱時,除了說明P、、三點共線之外,還需證明;

(2)如圖3,在平面直角坐標系xOy中,當、為旋轉中心時,點繞著點旋轉180°得到點;點繞著點旋轉180°得到點;點繞著點旋轉180°得到點;點繞著點旋轉180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標為(),點的坐為.

 

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

在數學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內畫兩條互相垂直,并且有公共原點O的數軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設垂足N,P在各自數軸上所表示的數分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),
(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作______.

查看答案和解析>>

同步練習冊答案