如圖,直角梯形OABC的直角頂點是坐標(biāo)原點,邊OA,OC分別在x軸,y軸的正半軸上.OA∥BC,D是BC上一點,,AB=3, ∠OAB=45°,E,F分別是線段OA,AB上的兩個動點,且始終保持∠DEF=45°,設(shè)OE=x,AF=y,則y與x的函數(shù)關(guān)系式為 ▲ ;如果△AEF是等腰三角形.△AEF沿EF對折得△A′EF與五邊形OEFBC重疊部分的面積 ▲ .
1、 、1、
【解析】
解:過B作BM⊥x軸于M;
Rt△ABM中,AB=3,∠BAM=45°;則AM=BM=;
∴BC=OA-AM=4-=,CD=BC-BD=;
連接OD;如圖(1),由(1)知:D在∠COA的平分線上,則∠DOE=∠COD=45°;
又∵在梯形DOAB中,∠BAO=45°,
∴OD=AB=3
由三角形外角定理得:∠1=∠DEA-45°,又∠2=∠DEA-45°,
∴∠1=∠2,
∴△ODE∽△AEF,
∴,即:,
∴y與x的解析式為:,
當(dāng)△AEF為等腰三角形時,存在EF=AF或EF=AE或AF=AE共3種情況;
①當(dāng)EF=AF時,如圖(2),∠FAE=∠FEA=∠DEF=45°;
∴△AEF為等腰直角三角形,D在A′E上(A′E⊥OA),
B在A′F上(A′F⊥EF)
∴△A′EF與五邊形OEFBC重疊的面積為四邊形EFBD的面積;
∵,
∴,
三角形AEF的面積==
∴四邊形BDEF的面積=四邊形AEDB的面積-三角形AEF的面積==
②當(dāng)EF=AE時,如圖(3),此時△A′EF與五邊形OEFBC重疊部分面積為△A′EF面積.
∠DEF=∠EFA=45°,DE∥AB,又DB∥EA,
∴四邊形DEAB是平行四邊形
∴AE=DB=,
∴三角形的面積=三角形AEF的面積==1
③當(dāng)AF=AE時,如圖(4),四邊形AEA′F為菱形且△A′EF在五邊形OEFBC內(nèi).
∴此時△A′EF與五邊形OEFBC重疊部分面積為△A′EF面積.
由(2)知△ODE∽△AEF,則OD=OE=3,
∴AE=AF=OA-OE=,
過F作FH⊥AE于H,則,
∴三角形的面積=,
綜上所述,△A′EF與五邊形OEFBC重疊部分的面積為或1或.
故答案為:,或1或.
科目:初中數(shù)學(xué) 來源: 題型:
1 |
4 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
BF |
OA |
2 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 |
4 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
3 |
2 |
2 |
3 |
2 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com