如圖:兩個(gè)等腰直角三角形的兩個(gè)直角頂點(diǎn)A、C都在y=上,若D(-8,0),則k=   
【答案】分析:分別過A、C作x軸的垂線,設(shè)垂足為E、F;首先設(shè)出點(diǎn)E的坐標(biāo),由于等腰直角三角形的斜邊等于斜邊上高的2倍,可得EF=4,進(jìn)而可表示出點(diǎn)F的坐標(biāo),即可表示出點(diǎn)A、C的坐標(biāo),然后將它們代入雙曲線解析式中,通過聯(lián)立方程組求得k的值.
解答:解:過A、C作AE⊥x軸于E,CF⊥x軸于F;
設(shè)A(-x,x),則C(-x-4,4-x);
代入雙曲線的解析式中得:,
消去k,得:-x2=x2-16,解得x2=8;
∴k=-x•x=-x2=-8.
故答案為:-8.
點(diǎn)評:此題主要考查的是反比例函數(shù)解析式的確定,還涉及到等腰直角三角形的性質(zhì),難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南昌)如圖,有兩個(gè)邊長為2的正方形,將其中一個(gè)正方形沿對角線剪開成兩個(gè)全等的等腰直角三角形,用這三個(gè)圖片分別在網(wǎng)格備用圖的基礎(chǔ)上(只要再補(bǔ)出兩個(gè)等腰直角三角形即可),分別拼出一個(gè)三角形、一個(gè)四邊形、一個(gè)五邊形、一個(gè)六邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

實(shí)踐探究題:
(1)如圖1,在直角坐標(biāo)系中,一個(gè)直角邊為4等腰直角三角形板ABC的直角頂點(diǎn)B放至點(diǎn)O的位置,點(diǎn)A、C分別在x軸的負(fù)半軸和y軸的正半軸上,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△AKL的位置,求直線AL的解析式;
(2)如圖2,將任意兩個(gè)等腰直角三角板△ABC和△MNP放至直角坐標(biāo)系中,直角頂點(diǎn)B、N分別在y軸的正半軸和負(fù)半軸上,頂點(diǎn)M、A都在x軸的負(fù)半軸上,頂點(diǎn)C、P分別在第二象限和第三象限,AC和MP的中點(diǎn)分別為E、F,請判斷△OEF的形狀,并證明你的結(jié)論;
(3)如圖3,將第(1)問中的等腰直角三角形板ABC順時(shí)針旋轉(zhuǎn)180°至△OMN的位置.G為線段OC的延長線上任意一點(diǎn),作GH⊥AG交x軸于H,并交直線MN于Q.請?zhí)骄肯旅鎯蓚(gè)結(jié)論:①
GN+GC
NQ
為定值;②
GN-GC
NQ
為定值.其中只有一個(gè)是正確的,請判斷正確的結(jié)論,并求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•裕華區(qū)二模)如圖①,將兩個(gè)等腰直角三角形疊放在一起,使上面三角板的一個(gè)銳角頂點(diǎn)與下面三角板的直角頂點(diǎn)重合,并將上面的三角板繞著這個(gè)頂點(diǎn)逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當(dāng)下面三角板的斜邊被分成三條線段時(shí),我們來研究這三條線段之間的關(guān)系.
(1)實(shí)驗(yàn)與操作:
如圖②,如果上面三角板的一條直角邊旋轉(zhuǎn)到CM的位置時(shí),它的斜邊恰好旋轉(zhuǎn)到CN的位置,請?jiān)诰W(wǎng)格中分別畫出以AM、MN和NB為邊長的正方形,觀察這三個(gè)正方形的面積之間的關(guān)系;
(2)猜想與探究:
如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點(diǎn),∠MCN=45°,作DA⊥AB于點(diǎn)A,截取DA=NB,并連接DC、DM.
我們來證明線段CD與線段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于點(diǎn)A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

請你繼續(xù)解答:
①線段MD與線段MN相等嗎?為什么?
②線段AM、MN、NB有怎樣的數(shù)量關(guān)系,為什么?
(3)拓廣與運(yùn)用:
如圖④,已知線段AB上任意一點(diǎn)M(AM<MB),是否總能在線段MB上找到一點(diǎn)N,使得分別以AM與BN為邊長的正方形的面積的和等于以MN為邊長的正方形的面積?若能,請?jiān)趫D④中畫出點(diǎn)N的位置,并簡要說明作法;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年福建省九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,有兩個(gè)邊長為2的正方形,將其中一個(gè)正方形沿對角線剪開成兩個(gè)全等的等腰直角三角形,用這三個(gè)圖片分別在網(wǎng)格備用圖的基礎(chǔ)上(只要再補(bǔ)出兩個(gè)等腰直角三角形即可),分別拼符合要求的圖形:(如圖1
????????????????????

1??????????????????????????????????????? 2

既不是軸對稱圖形,又不是中心對稱圖形?????????????? 是軸對稱圖形,不是中心對稱圖形

????????????????????

????????????????? 3????????????????????????????????????? 4

???????????? 是中心對稱圖形,不是軸對稱圖形?? ????? 既是軸對稱圖形,又是中心對稱圖形

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(江西卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,有兩個(gè)邊長為2的正方形,將其中一個(gè)正方形沿對角線剪開成兩個(gè)全等的等腰直角三角形,用這三個(gè)圖片分別在網(wǎng)格備用圖的基礎(chǔ)上(只要再補(bǔ)出兩個(gè)等腰直角三角形即可),分別拼出一個(gè)三角形、一個(gè)四邊形、一個(gè)五邊形、一個(gè)六邊形.

 

查看答案和解析>>

同步練習(xí)冊答案