【題目】如圖,是拋物線形拱橋,當拱頂離水面2米時,水面寬4米.若水面下降1米,則水面寬度將增加多少米?
【答案】(2﹣4)米
【解析】試題分析:建立平面直角坐標系,設橫軸x通過AB,縱軸y通過AB中點O且通過C點,拋物線以y軸為對稱軸,由題意得OC=2即拋物線頂點C坐標為(0,2),所以將拋物線解析式設為頂點式y=ax2+2,其中a可通過代入A點坐標(-2,0)到拋物線解析式得出,當水面下降1米,通過拋物線在圖上的觀察可轉化為:當y=-1時,對應的拋物線上兩點之間的距離,也就是直線y=-1與拋物線相交的兩點之間的距離,將y=-1代入拋物線解析式即可求出,最后求出增加的寬度即可.
試題解析:
建立平面直角坐標系,設橫軸x通過AB,縱軸y通過AB中點O且通過C點,
∵OC=2,
∴頂點C坐標為(0,2),
∴設拋物線解析式為y=ax2+2,
將 A點坐標(-2,0)代入解析式,得:a=-0.5,
∴拋物線解析式為:y=-0.5x2+2,
令y=-1,-1=-0.5x2+2,
解得:x=±,
∴水面寬度增加到2米,
比原先的寬度當然是增加了(2-4)米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰直角三角形紙片ABC 中,∠C=90°,把紙片沿EF 對折后,點A恰好落在BC 上的點D處,點CE=I,AC=4,則下列結論一定正確的個數(shù)是( )
①∠CDE= ∠DFB ;②BD > CE ;③BC= CD ;④△DCE 與△BDF 的周長相等.
A. 1個 B. 2個 C. 3個 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形 ABCD 的邊長為 10,E 在 BC 邊上運動,取 DE 的中點 G,EG 繞點 E 順時針旋轉90°得 EF,問 CE 長為多少時,A、C、F 三點在一條直線上( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4cm,點E為AC邊上一點,且AE=3cm,動點P從點A出發(fā),以1cm/s的速度沿線段AB向終點B運動,運動時間為x s.作∠EPF=90°,與邊BC相交于點F.設BF長為ycm.
(1)當x= s時,EP=PF;
(2)求在點P運動過程中,y與x之間的函數(shù)關系式;
(3)點F運動路程的長是 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在Rt△ABC中,∠C=90°,點D是AC的中點,且∠A+∠CDB=90°,過點A、D作⊙O,使圓心O在AB上,⊙O與AB交于點E.
(1)求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知x1,x2是關于x的一元二次方程4kx2﹣4kx+k+1=0的兩個實數(shù)根.
(1)是否存在實數(shù)k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,說明理由;
(2)求使﹣2的值為整數(shù)的實數(shù)k的整數(shù)值;
(3)若k=﹣2,λ=,試求λ的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在⊙O中,AB是⊙O的直徑,AC=8,BC=6.
(1)求⊙O的面積;
(2)若D為⊙O上一點,且△ABD為等腰三角形,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=8cm,BC=6cm,P點在BC上,從B點到C點運動(不包括 C點),點 P運動的速度為1cm/s;Q點在AC上從C點運動到A點(不包括A點),速度為2cm/s,若點 P、Q 分別從B、C 同時運動,且運動時間記為t秒,請解答下面的問題,并寫出探索的主要過程.
(1)當 t 為何值時,P、Q 兩點的距離為 4cm?
(2)請用配方法說明,點P運動多少時間時,四邊形BPQA的面積最小?最小面積是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com