【題目】如圖,在Rt△AOB中,∠AOB=90°,AO=,BO=1,AB的垂直平分線交AB于點(diǎn)E,交射線BO于點(diǎn)F.點(diǎn)P從點(diǎn)A出發(fā)沿射線AO以每秒個(gè)單位的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)O出發(fā)沿OB方向以每秒1個(gè)單位的速度運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t= 時(shí),PQ∥EF;
(2)若P、Q關(guān)于點(diǎn)O的對(duì)稱點(diǎn)分別為P′、Q′,當(dāng)線段P′Q′與線段EF有公共點(diǎn)時(shí),t的取值范圍是 .
【答案】;
【解析】解:(1)如圖1,
當(dāng)PQ∥EF時(shí),則∠QPO=∠ENA,
又∵∠AEN=∠QOP=90°,
∴△AEN∽△QOP,
∵∠AOB=90°,AO=,BO=1,
∴tanA===,
∴∠A=∠PQO=30°,
∴==,
解得:t=,
故當(dāng)t=時(shí),PQ∥EF;
所以答案是:;
(2)如圖2,
當(dāng)P點(diǎn)介于P1和P2之間的區(qū)域時(shí),P1′點(diǎn)介于P1′和P2′之間,此時(shí)線段P′Q′與線段EF有交點(diǎn),
當(dāng)P運(yùn)動(dòng)到P1時(shí),
∵AE=AB=1,且易知△AEP1′∽△AOB,
∴,∴AP1′=,
∴P1O=P1′O=,
∴AP1=AO+P1O=,
∴此時(shí)P點(diǎn)運(yùn)動(dòng)的時(shí)間t==s,
當(dāng)P點(diǎn)運(yùn)動(dòng)到P2時(shí),
∵∠BAO=30°,∠BOA=90°,
∴∠B=60°,
∵AB的垂直平分線交AB于點(diǎn)E,
∴FB=FA,
∴△FBA是等邊三角形,
∴當(dāng)PO=OA=時(shí),此時(shí)Q2′與F重合,A與P2′重合,
∴PA=2,則t=1秒時(shí),線段P′Q′與線段EF有公共點(diǎn),
故當(dāng)t的取值范圍是:≤t≤1 .
所以答案是:≤t≤1 .
【考點(diǎn)精析】本題主要考查了平行線的性質(zhì)和線段垂直平分線的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ);垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+5與雙曲線y= (x>0)相交于A,B兩點(diǎn),與x軸相交于C點(diǎn),△BOC的面積是 .若將直線y=﹣x+5向下平移1個(gè)單位,則所得直線與雙曲線y= (x>0)的交點(diǎn)有( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.0個(gè),或1個(gè),或2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值 (a﹣ )( ﹣1)÷ ,其中a,b分別為關(guān)于x的一元二次方程x2﹣ x+1=0的兩個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三個(gè)布袋都不透明,甲袋中裝有1個(gè)紅球和1個(gè)白球;乙袋中裝有一個(gè)紅球和2個(gè)白球;丙袋中裝有2個(gè)白球.這些球除顏色外都相同.從這3個(gè)袋中各隨機(jī)地取出1個(gè)球. (Ⅰ)取出的3個(gè)球恰好是2個(gè)紅球和1個(gè)白球的概率是多少?
(Ⅱ)取出的3個(gè)球全是白球的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列一元二次方程中,有兩個(gè)相等實(shí)數(shù)根的是( 。
A.﹣8=0
B.2﹣4x+3=0
C.9+6x+1=0
D.5x+2=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)習(xí)概率的課堂上,老師提出問(wèn)題:只有一張電影票,小明和小剛想通過(guò)抽取撲克牌的游戲來(lái)決定誰(shuí)去看電影,請(qǐng)你設(shè)計(jì)一個(gè)對(duì)小明和小剛都公平的方案.
甲同學(xué)的方案:將紅桃2、3、4、5四張牌背面向上,小明先抽一張,小剛從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小明看電影,否則小剛看電影.
(1)甲同學(xué)的方案公平嗎?請(qǐng)用列表或畫樹(shù)狀圖的方法說(shuō)明;
(2)乙同學(xué)將甲的方案修改為只用紅桃2、3、4三張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?(只回答,不說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為開(kāi)拓學(xué)生視野,開(kāi)展“課外讀書周”活動(dòng),活動(dòng)后期隨機(jī)調(diào)查了九年級(jí)部分學(xué)生一周的課外閱讀時(shí)間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖的信息回答下列問(wèn)題:
(1)本次調(diào)查的學(xué)生總數(shù)為_(kāi)___人,被調(diào)查學(xué)生的課外閱讀時(shí)間的中位數(shù)是___小時(shí),眾數(shù)是___小時(shí);
(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,課外閱讀時(shí)間為5小時(shí)的扇形的圓心角度數(shù)是;
(4)若全校九年級(jí)共有學(xué)生700人,估計(jì)九年級(jí)一周課外閱讀時(shí)間為6小時(shí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)L1:y=ax2-2ax+a+3(a>0)和二次函數(shù)L2:y=-a(x+1)2+1(a>0)圖象的頂點(diǎn)分別為M,N,與y軸分別交于點(diǎn)E,F(xiàn).
(1)函數(shù)y=ax2-2ax+a+3(a>0)的最小值為 , 當(dāng)二次函數(shù)L1 , L2的y值同時(shí)隨著x的增大而減小時(shí),x的取值范圍是
(2)當(dāng)EF=MN時(shí),求a的值,并判斷四邊形ENFM的形狀(直接寫出,不必證明).
(3)若二次函數(shù)L2的圖象與x軸的右交點(diǎn)為A(m,0),當(dāng)△AMN為等腰三角形時(shí),求方程-a(x+1)2+1=0的解.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com