小明、小華在一棟電梯樓前感慨樓房真高.小明說(shuō):“這樓起碼20層!”小華卻不以為然:“20層?我看沒(méi)有,數(shù)數(shù)就知道了!”小明說(shuō):“有本事,你不用數(shù)也能明白!”小華想了想說(shuō):“沒(méi)問(wèn)題!讓我們來(lái)量一量吧!”小明、小華在樓體兩側(cè)各選A、B兩點(diǎn),測(cè)量數(shù)據(jù)如圖,其中矩形CDEF表示樓體,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四點(diǎn)在同一直線上)問(wèn):

(1)樓高多少米?
(2)若每層樓按3米計(jì)算,你支持小明還是小華的觀點(diǎn)呢?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):≈1.73,≈1.41,≈2.24)
解:(1)設(shè)樓高為x米,則CF=DE=x米,
∵∠A=30°,∠B=45°,∠ACF=∠BDE=90°,∴AC=x米,BD=x米。
x+x=150﹣10,解得(米)。
∴樓高51.1米.
(2)∵51.1米<3×20米,
∴我支持小華的觀點(diǎn),這樓不到20層。

試題分析:(1)設(shè)樓高為x,則CF=DE=x,在Rt△ACF和Rt△DEB中分別用x表示AC、BD的值,然后根據(jù)AC+CD+BD=150,求出x的值即可。
(2)根據(jù)(1)求出的樓高x,然后求出20層樓的高度,比較x和20層樓高的大小即可判斷誰(shuí)的觀點(diǎn)正確!
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知四邊形ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,對(duì)角線AC與BD交于點(diǎn)O,過(guò)點(diǎn)O的直線EF交AD于點(diǎn)E,交BC于點(diǎn)F.

(1)求證:△AOE≌△COF;
(2)若∠EOD=30°,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

ABCD中,點(diǎn)E、F分別在AB、CD上,且AE=CF.

(1)求證:△ADE≌△CBF;
(2)若DF=BF,求證:四邊形DEBF為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,將△ABC繞AC的中點(diǎn)O順時(shí)針旋轉(zhuǎn)180°得到△CDA,添加一個(gè)條件
     ,使四邊形ABCD為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,在菱形ABCD中,F(xiàn)是BC上任意一點(diǎn),連接AF交對(duì)角線BD于點(diǎn)E,連接EC.

(1)求證:AE=EC;
(2)當(dāng)∠ABC=60°,∠CEF=60°時(shí),點(diǎn)F在線段BC上的什么位置?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知ABCD中,∠A+∠C=200°,則∠B的度數(shù)是
A.100°B.160°C.80°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2013年四川南充6分)如圖,在平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,經(jīng)過(guò)點(diǎn)O的直線交AB于E,交CD于F.

求證:OE=OF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于點(diǎn)G,點(diǎn)E、F分別為AG、CD的中點(diǎn),連接DE、FG.

(1)求證:四邊形DEGF是平行四邊形;
(2)當(dāng)點(diǎn)G是BC的中點(diǎn)時(shí),求證:四邊形DEGF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知菱形的周長(zhǎng)為40cm,一條對(duì)角線長(zhǎng)為16cm,則這個(gè)菱形的面積為  cm2

查看答案和解析>>

同步練習(xí)冊(cè)答案