【題目】如圖,□ABCD中,AQ、BN、CN、DQ分別是∠DAB、∠ABC、∠BCD、∠CDA的平分線,AQ與BN交于P,CN與DQ交于M,在不添加其它條件的情況下,試寫出一個由上述條件推出的結(jié)論,并給出證明過程(要求:推理過程中要用到“平行四邊形”和“角平分線”這兩個條件).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點(diǎn)G在對角線BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路線為B→A→G→E,小聰行走的路線為B→A→D→E→F.若小敏行走的路程為3100m,則小聰行走的路程為 m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象經(jīng)過點(diǎn)(﹣2,﹣2)和點(diǎn)(2,4).
(1)求這個函數(shù)的解析式;
(2)判斷點(diǎn)P(1,1)是否在此函數(shù)圖象上,并說明理由.
(3)求這個函數(shù)的圖象與坐標(biāo)軸圍成的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(-8,0)及動點(diǎn)P(x,y),且2x-y=-6.設(shè)三角形OPA的面積為S.
(1)當(dāng)x=-2時,點(diǎn)P坐標(biāo)是____________;
(2)若點(diǎn)P在第二象限,且x為整數(shù)時,求y的值;
(3)是否存在第一象限的點(diǎn)P,使得S=12.若存在,求點(diǎn)P的坐標(biāo);若不存在,
說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩艘輪船同時從港口O出發(fā),甲輪船以20海里/時的速度向南偏東45°方向航行,乙輪船向南偏西45°方向航行.已知它們離開港口O兩小時后,兩艘輪船相距50海里,求乙輪船平均每小時航行多少海里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠BMN與∠DNM的平分線相交于點(diǎn)G.
(1)完成下面的證明:
∵MG平分∠BMN
∴∠GMN=∠BMN
同理∠GNM=∠DNM.
∵AB∥CD ,
∴∠BMN+∠DNM=
∴∠GMN+∠GNM=
∵∠GMN+∠GNM+∠G=
∴∠G=
∴MG與NG的位置關(guān)系是
(2)把上面的題設(shè)和結(jié)論,用文字語言概括為一個命題: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A(2,5)在反比例函數(shù)y= 的圖象上.一次函數(shù)y=x+b的圖象過點(diǎn)A,且與反比例函數(shù)圖象的另一交點(diǎn)為B.
(1)求k和b的值;
(2)設(shè)反比例函數(shù)值為y1 , 一次函數(shù)值為y2 , 求y1>y2時x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com