(2004•嘉興)如果一個(gè)矩形的長(zhǎng)和寬是一元二次方程x2-10x+20=0的兩個(gè)根,那么這個(gè)矩形的周長(zhǎng)是   
【答案】分析:設(shè)矩形的長(zhǎng)和寬分別為a,b,根據(jù)根與系數(shù)的關(guān)系可以得到a+b=10,那么矩形的周長(zhǎng)是2(a+b)就可以求出了.
解答:解:根據(jù)根與系數(shù)的關(guān)系可以得到a+b=10,
那么矩形的周長(zhǎng)是2(a+b)=2×10=20.
故填空答案為20.
點(diǎn)評(píng):本題要注意一元二次方程根與系數(shù)的知識(shí)的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2004•嘉興)如圖,Rt△OAB的斜邊OA在x軸的正半軸上,直角的頂點(diǎn)B在第一象限內(nèi),已知點(diǎn)A(10,0),△OAB的面積為20.
(1)求B點(diǎn)的坐標(biāo);
(2)求過O、B、A三點(diǎn)拋物線的解析式;
(3)判斷該拋物線的頂點(diǎn)P與△OAB的外接圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省衢州市初中畢業(yè)生學(xué)業(yè)考試模擬試卷(解析版) 題型:解答題

(2004•嘉興)如圖,Rt△OAB的斜邊OA在x軸的正半軸上,直角的頂點(diǎn)B在第一象限內(nèi),已知點(diǎn)A(10,0),△OAB的面積為20.
(1)求B點(diǎn)的坐標(biāo);
(2)求過O、B、A三點(diǎn)拋物線的解析式;
(3)判斷該拋物線的頂點(diǎn)P與△OAB的外接圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年浙江省舟山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•嘉興)如圖,Rt△OAB的斜邊OA在x軸的正半軸上,直角的頂點(diǎn)B在第一象限內(nèi),已知點(diǎn)A(10,0),△OAB的面積為20.
(1)求B點(diǎn)的坐標(biāo);
(2)求過O、B、A三點(diǎn)拋物線的解析式;
(3)判斷該拋物線的頂點(diǎn)P與△OAB的外接圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年浙江省嘉興市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•嘉興)如圖,Rt△OAB的斜邊OA在x軸的正半軸上,直角的頂點(diǎn)B在第一象限內(nèi),已知點(diǎn)A(10,0),△OAB的面積為20.
(1)求B點(diǎn)的坐標(biāo);
(2)求過O、B、A三點(diǎn)拋物線的解析式;
(3)判斷該拋物線的頂點(diǎn)P與△OAB的外接圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2004•嘉興)如圖,已知⊙B的半徑r=1,PA、PO是⊙B的切線,A、O是切點(diǎn).過點(diǎn)A作弦AC∥PO,連接CO、AO(如圖1).
(1)問△PAO與△OAC有什么關(guān)系?證明你的結(jié)論;
(2)把整個(gè)圖形放在直角坐標(biāo)系中(如圖2),使OP與x軸重合,B點(diǎn)在y軸上.
設(shè)P(t,0),P點(diǎn)在x軸的正半軸上運(yùn)動(dòng)時(shí),四邊形PACO的形狀隨之變化,當(dāng)這圖形滿足什么條件時(shí),四邊形PACO是菱形?說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案