如圖,在平面直角坐標(biāo)系中,直線y=x+1與拋物線y=ax2+bx-3交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的縱坐標(biāo)為3.點(diǎn)P是直線AB下方的拋物線上一動點(diǎn)(不與A、B點(diǎn)重合),過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,作PD⊥AB于點(diǎn)D.
(1)求a、b及sin∠ACP的值;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為m.
①用含有m的代數(shù)式表示線段PD的長,并求出線段PD長的最大值;
②連接PB,線段PC把△PDB分成兩個(gè)三角形,是否存在適合的m的值,直接寫出m的值,使這兩個(gè)三角形的面積之比為9:10?若存在,直接寫出m的值;若不存在,說明理由.

【答案】分析:(1)已知直線AB的解析式,首先能確定A、B點(diǎn)的坐標(biāo),然后利用待定系數(shù)法確定a、b的值;若設(shè)直線AB與y軸的交點(diǎn)為E,E點(diǎn)坐標(biāo)易知,在Rt△AEO中,能求出sin∠AEO,而∠AEO=∠ACP,則∠ACP的正弦值可得.
(2)①已知P點(diǎn)橫坐標(biāo),根據(jù)直線AB、拋物線的解析式,求出C、P的坐標(biāo),由此得到線段PC的長;在Rt△PCD中,根據(jù)(1)中∠ACP的正弦值,即可求出PD的表達(dá)式,再根據(jù)所得函數(shù)的性質(zhì)求出PD長的最大值.
②在表達(dá)△PCD、△PBC的面積時(shí),若都以PC為底,那么它們的面積比等于PC邊上的高的比.分別過B、D作PC的垂線,首先求出這兩條垂線段的表達(dá)式,然后根據(jù)題干給出的面積比例關(guān)系求出m的值.
解答:解:(1)由x+1=0,得x=-2,∴A(-2,0).
x+1=3,得x=4,∴B(4,3).
∵y=ax2+bx-3經(jīng)過A、B兩點(diǎn),

,
則拋物線的解析式為:y=x2-x-3,
設(shè)直線AB與y軸交于點(diǎn)E,則E(0,1).
∵PC∥y軸,
∴∠ACP=∠AEO.
∴sin∠ACP=sin∠AEO===

(2)①由(1)知,拋物線的解析式為y=x2-x-3.則點(diǎn)P(m,m2-m-3).
已知直線AB:y=x+1,則點(diǎn)C(m,m+1).
∴PC=m+1-(m2-m-3)=-m2+m+4=-(m-1)2+
Rt△PCD中,PD=PC•sin∠ACP=[-(m-1)2+]•=-(m-1)2+
∴PD長的最大值為:

②如圖,分別過點(diǎn)D、B作DF⊥PC,BG⊥PC,垂足分別為F、G.
∵sin∠ACP=,
∴cos∠ACP=,
又∵∠FDP=∠ACP
∴cos∠FDP==,
在Rt△PDF中,DF=PD=-(m2-2m-8).
又∵BG=4-m,
===
當(dāng)==時(shí),解得m=;
當(dāng)==時(shí),解得m=
點(diǎn)評:本題考查了二次函數(shù)的應(yīng)用以及解析式的確定、解直角三角形、圖形面積的求法等知識,主要考查學(xué)生數(shù)形結(jié)合思想的應(yīng)用能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案