解:(1)∵∠ABC和∠ACB的平分線交于點O,∠ABC=50°,∠ACB=60°,
∴∠OBC+∠OCB=
(∠ABC+∠ACB)=
×(50°+60°)=55°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-55°=125°;
(2)∵∠ABC和∠ACB的平分線交于點O,∠ABC=α,∠ACB=β,
∴∴∠OBC+∠OCB=
(∠ABC+∠ACB)=
(α+β),
∴∠BOC=180°-(∠OBC+∠OCB)=180°-
(α+β);
(3)如圖所示:
∵∠ABC和∠ACB鄰補角的平分線交于點O,
∴∠CBO+∠ACO=
+
=180°-
,
∴∠BOC=180°-(180°-
)=
α+
β.
分析:(1)先根據(jù)角平分線的定義求出∠OBC+∠OCB的度數(shù),再根據(jù)三角形內角和定理求出∠BOC的度數(shù)即可;
(2)先用α、β表示出∠OBC+∠OCB的度數(shù),再根據(jù)三角形內角和定理求出∠BOC的度數(shù)即可;
(3)根據(jù)題意畫出圖形,再根據(jù)三角平分線的定義求出∠CBO+∠ACO的度數(shù),進而可得出結論.
點評:本題考查的是三角形內角和定理及角平分線的性質,熟知三角形的內角和是180°是解答此題的關鍵.