將一張矩形紙按照如圖方式對(duì)折兩次后,沿著圖中的虛線剪開,得到①、②兩部分,將①展開后得到的平面圖形是


  1. A.
    直角三角形
  2. B.
    矩形
  3. C.
    正方形
  4. D.
    菱形
D
分析:經(jīng)過2次對(duì)折后可得①的對(duì)角線互相平分且垂直,可得相應(yīng)圖形.
解答:易得①展開后是一個(gè)四邊形,
∵四邊形的對(duì)角線互相平分,
∴是平行四邊形,
∵對(duì)角線互相垂直,
∴該平行四邊形是菱形,
故選D.
點(diǎn)評(píng):考查學(xué)生的分析能力;判斷出所得四邊形對(duì)角線的性質(zhì)是解決本題的突破點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、將一張矩形紙按照如圖方式對(duì)折兩次后,沿著圖中的虛線剪開,得到①、②兩部分,將①展開后得到的平面圖形是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

取一張矩形的紙進(jìn)行折疊,具體操作過程如下:
第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖(1)所示;
第二步:再把B點(diǎn)疊在折痕線MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為B′,得 Rt△AB′E,如圖(2)所示;
第三步:沿EB′線折疊得折痕EF,如圖(3)所示;利用展開圖(4)所示.
精英家教網(wǎng)
探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說明理由.
(3)如圖(5),將矩形紙片ABCD沿EF折疊,使點(diǎn)A落在DC邊上的點(diǎn)A′處,x軸垂直平分DA,直線EF的表達(dá)式為y=kx-k (k<0)
①問:EF與拋物線y=-
1
8
x2
有幾個(gè)公共點(diǎn)?
②當(dāng)EF與拋物線只有一個(gè)公共點(diǎn)時(shí),設(shè)A′(x,y),求
x
y
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

取一張矩形的紙進(jìn)行折疊,具體操作過程如下:
第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖(1)所示;
第二步:再把B點(diǎn)疊在折痕線MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為B′,得 Rt△AB′E,如圖(2)所示;
第三步:沿EB′線折疊得折痕EF,如圖(3)所示;利用展開圖(4)所示.
作業(yè)寶
探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說明理由.
(3)如圖(5),將矩形紙片ABCD沿EF折疊,使點(diǎn)A落在DC邊上的點(diǎn)A′處,x軸垂直平分DA,直線EF的表達(dá)式為y=kx-k (k<0)
①問:EF與拋物線y=數(shù)學(xué)公式有幾個(gè)公共點(diǎn)?
②當(dāng)EF與拋物線只有一個(gè)公共點(diǎn)時(shí),設(shè)A′(x,y),求數(shù)學(xué)公式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年江蘇省淮安市淮陰中學(xué)高一分班考試數(shù)學(xué)試卷(解析版) 題型:解答題

取一張矩形的紙進(jìn)行折疊,具體操作過程如下:
第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖(1)所示;
第二步:再把B點(diǎn)疊在折痕線MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為B′,得 Rt△AB′E,如圖(2)所示;
第三步:沿EB′線折疊得折痕EF,如圖(3)所示;利用展開圖(4)所示.

探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說明理由.
(3)如圖(5),將矩形紙片ABCD沿EF折疊,使點(diǎn)A落在DC邊上的點(diǎn)A′處,x軸垂直平分DA,直線EF的表達(dá)式為y=kx-k (k<0)
①問:EF與拋物線y= 有幾個(gè)公共點(diǎn)?
②當(dāng)EF與拋物線只有一個(gè)公共點(diǎn)時(shí),設(shè)A′(x,y),求 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案