【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)B的坐標(biāo)為(3,0),與軸交于點(diǎn)C(0,-3),頂點(diǎn)為D.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo).
(2)聯(lián)結(jié)AC,BC,求∠ACB的正切值.
(3)點(diǎn)P是x軸上一點(diǎn),是否存在點(diǎn)P使得△PBD與△CAB相似,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(4)M是拋物線上一點(diǎn),點(diǎn)N在軸,是否存在點(diǎn)N,使得以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1),D(1,-4);(2)2;(3)P(,0)或P(-3,0);(4)N(1,0)或(,0)或(-3,0).
【解析】試題分析:(1)利用待定系數(shù)法,把B、C點(diǎn)的坐標(biāo)代入解析式即可求解;
(2)作AH⊥BC于點(diǎn)H,通過與x軸的交點(diǎn)y=0構(gòu)成方程,解方程可得A點(diǎn)的坐標(biāo),然后解直角三角形可求解;
(3)作DG⊥OB于點(diǎn)G ,tan∠DBG=tan∠ACB,可得∠DBG=∠ACB,然后利用相似三角形的性質(zhì)和判定討論得到P點(diǎn)在在點(diǎn)B的左側(cè),再根據(jù)相似三角形的對(duì)應(yīng)邊成比例求解即可;
(4)設(shè)M點(diǎn)的坐標(biāo)為(x,x2-2x-3),然后根據(jù)A、C點(diǎn)和M的坐標(biāo),結(jié)合平行四邊形的性質(zhì)與判定求出N點(diǎn)的坐標(biāo)即可.
試題解析:(1)y=x2-2x-3
D(1,-4)
(2)作AH⊥BC于點(diǎn)H
x2-2x-3=0
解得x=-1或x=3
所以A點(diǎn)為(-1,0)
∵ OB=OC,∠BOC=90°
∴∠OBC=45°
∵AB=4
∴AH=BH=2
∵BC=3
∴CH=
∴tan∠ACB=2
(3)作DG⊥OB于點(diǎn)G
∵BG=2,DG=4
∴tan∠DBG=2
∵tan∠ACB=2
∴∠DBG=∠ACB
當(dāng)點(diǎn)P在點(diǎn)B的右側(cè)時(shí),∠PBD>90°,△PBD是鈍角三角形與△CAB不相似,
所以點(diǎn)P在點(diǎn)B的左側(cè).
∵△PBD與△CAB相似,且∠DBG=∠ACB
∴ 或
∵BD=2
∴BP=或BP=6
∴P(-,0)或P(-3,0)
(4)N(1,0)或(,0)或(-3,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC的平分線交CD于點(diǎn)E.
(1)若∠A=70°,求∠ABE的度數(shù);
(2)若AB∥CD,且∠1=∠2,判斷DF和BE是否平行,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)請(qǐng)直接寫出線段AF,AE的數(shù)量關(guān)系;
(2)①將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),如圖②,連接AE,請(qǐng)判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;
②若AB=2,CE=2,在圖②的基礎(chǔ)上將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn)一周的過程中,當(dāng)平行四邊形ABFD為菱形時(shí),直接寫出線段AE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△DAC、△EBC均是等邊三角形,點(diǎn)A、C、B在同一條直線上,且AE、BD分別與CD、CE交于點(diǎn)M、N.
求證:(1)AE=DB;
(2)△CMN為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,青少年中的近視眼和肥胖案例日趨增多,人們普遍意識(shí)到健康的身體是學(xué)習(xí)的保障,所以體育活動(dòng)越來越受重視.某商店分兩次購(gòu)進(jìn)跳繩和足球兩種商品進(jìn)行銷售,每次購(gòu)進(jìn)同一種商品的進(jìn)價(jià)相同,具體情況如下表所示.
購(gòu)進(jìn)數(shù)量(件) | 購(gòu)進(jìn)所需費(fèi)用(元) | ||
跳繩 | 足球 | ||
第一次 | 30 | 40 | 3800 |
第二次 | 40 | 30 | 3200 |
(1)跳繩和足球兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商店計(jì)劃用5300元的資金進(jìn)行第三次進(jìn)貨,共購(gòu)進(jìn)跳繩和足球兩種商品100件,其中要求足球的數(shù)量不少于跳繩的數(shù)量,有哪幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“珍重生命,注意安全!”同學(xué)們?cè)谏舷聦W(xué)途中一定要注意騎車安全.小明騎單車上學(xué),當(dāng)他騎了一段時(shí),想起要買某本書,于是又折回到剛經(jīng)過的新華書店,買到書后繼續(xù)去學(xué)校,以下是他本次所用的時(shí)間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學(xué)校的路程是多少米;
(2)小明在書店停留了多少分鐘;
(3)本次上學(xué)途中,小明一共行駛了多少米?一共用了多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了節(jié)約用水,對(duì)自來水的收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水不超過10噸的部分,按2元/噸收費(fèi);超過10噸的部分按2.5元/噸收費(fèi).
(1)若黃老師家5月份用水16噸,問應(yīng)交水費(fèi)多少元?
(2)若黃老師家7月用水a噸,問應(yīng)交水費(fèi)多少元?(用a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在ABCD中,點(diǎn)E是BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F,連接BF.
(1)求證:△ABE≌△FCE;
(2)若AF=AD,求證:四邊形ABFC是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C,D在線段AB上,△PCD是等邊三角形.
(1)當(dāng)AC,CD,DB滿足怎樣的關(guān)系時(shí),△ACP∽△PDB?
(2)當(dāng)△ACP∽△PDB時(shí),求∠APB的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com