等腰梯形的腰長(zhǎng)為13cm,兩底差為10cm,則高為______.

∵四邊形ABCD是等腰梯形,
∴BE=
1
2
(BC-AD)=5cm,
在Rt△ABE中,AE=
AB2-BE2
=12cm.
故答案為:12cm.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,AB、CD是兩條線段,M是AB的中點(diǎn),S△DMC、S△DAC、S△DBC分別表示△DMC、△DAC、△DBC的面積.當(dāng)ABCD時(shí),則有S△DMC=
S△DAC+S△DBC
2

(1)如圖2,M是AB的中點(diǎn),AB與CD不平行時(shí),作AE、MN、BF分別垂直DC于E、N、F三個(gè)點(diǎn),問結(jié)論①是否仍然成立?請(qǐng)說明理由.
(2)若圖3中,AB與CD相交于點(diǎn)O時(shí),問S△DMC、S△DAC和S△DBC三者之間存在何種相等關(guān)系?試證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),直角梯形OABC中,∠A=90°,ABCO,且AB=2,OA=2
3
,∠BCO=60°.
(1)求證:△OBC為等邊三角形;
(2)如圖(2),OH⊥BC于點(diǎn)H,動(dòng)點(diǎn)P從點(diǎn)H出發(fā),沿線段HO向點(diǎn)O運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿線段OA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為1/秒.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,△OPQ的面積為S,求S與t之間的函數(shù)關(guān)系式,并求出t的取值范圍;
(3)設(shè)PQ與OB交于點(diǎn)M,當(dāng)OM=PM時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)直角梯形,兩底邊長(zhǎng)為4和6,垂直于兩底的腰長(zhǎng)為2
3
,折疊此梯形,使梯形相對(duì)的頂點(diǎn)重合,那么折痕長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果等腰梯形的兩底之差等于一腰長(zhǎng),那么這個(gè)等腰梯形的銳角為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

楊老師在上四邊形時(shí)給學(xué)生出了這樣一個(gè)題.如圖,若在等腰梯形ABCD中,M、N分別是AD、BC的中點(diǎn),E、F分別是BM、CM的中點(diǎn)時(shí).提出以下問題:
(1)在不添加其它線段的前提下,圖中有哪幾對(duì)全等三角形?請(qǐng)直接寫出結(jié)論;
(2)猜想四邊形MENF是何種的四邊形?并加以說明;
(3)連接MN,當(dāng)MN與BC有怎樣的數(shù)量關(guān)系時(shí),四邊形MENF是正方形?(直接寫出關(guān)系式,不需要說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列四個(gè)圖形缺口都能與右邊的圖形缺口吻合,哪個(gè)圖形有可能與右邊殘缺的圖形拼成一個(gè)梯形(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在等腰梯形ABCD中,ADBC,BC=10,AD=2,∠B=45°.直角三角板含45°角的頂點(diǎn)E在邊BC上移動(dòng),一直角邊始終經(jīng)過點(diǎn)A,斜邊與CD交于點(diǎn)F.若△ABE為等腰三角形,則CF的長(zhǎng)等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,梯形ABCD中,ADBC,EF是梯形的中位線,連接AC交EF于G,BD交EF于H,若AD:BC=2:3,則HG:AD等于( 。
A.1:2B.1:4C.2:3D.1:3

查看答案和解析>>

同步練習(xí)冊(cè)答案