精英家教網(wǎng)如圖,在平面直角坐標系中,已知OA=12厘米,OB=6厘米.點P從點O開始沿OA邊向點A以1厘米/秒的速度移動;點Q從點B開始沿BO邊向點O以1厘米/秒的速度移動.如果P、Q同時出發(fā),用t(秒)表示移動的時間(0≤t≤6),那么
(1)設(shè)△POQ的面積為y,求y關(guān)于t的函數(shù)解析式;
(2)當(dāng)△POQ的面積最大時,將△POQ沿直線PQ翻折后得到△PCQ,試判斷點C是否落在直線AB上,并說明理由;
(3)當(dāng)t為何值時,△POQ與△AOB相似.
分析:(1)根據(jù)P、Q的速度,用時間t表示出OQ和OP的長,即可通過三角形的面積公式得出y,t的函數(shù)關(guān)系式;
(2)先根據(jù)(1)的函數(shù)式求出y最大時,x的值,即可得出OQ和OP的長,然后求出C點的坐標和直線AB的解析式,將C點坐標代入直線AB的解析式中即可判斷出C是否在AB上;
(3)本題要分△OPQ∽△OAB和△OPQ∽△OBA兩種情況進行求解,可根據(jù)各自得出的對應(yīng)成比例相等求出t的值.
解答:解:(1)∵OA=12,OB=6,由題意,得BQ=1×t=t,OP=1×t=t.
∴OQ=6-t.
∴y=
1
2
×OP×OQ=
1
2
×t(6-t)=-
1
2
t2+3t(0≤t≤6);

(2)∵y=-
1
2
t2+3t,
∴當(dāng)y有最大值時,t=3
∴OQ=3,OP=3,即△POQ是等腰直角三角形.
把△POQ沿直線PQ翻折后,可得四邊形OPCQ是正方形.
∴點C的坐標為(3,3).
∵A(12,0),B(0,6),
∴直線AB的解析式為y=-
1
2
x+6
當(dāng)x=3時,y=
9
2
≠3,
∴點C不落在直線AB上;
(3)
①若△POQ∽△AOB時,
OQ
OB
=
OP
OA
,即
6-t
6
=
t
12
,12-2t=t,∴t=4.
②若△POQ∽△BOA時,
OQ
OA
=
OP
OB
,即
6-t
12
=
t
6
,6-t=2t,∴t=2.
∵0≤t≤6,
∴t=4和t=2均符合題意,
∴當(dāng)t=4或t=2時,△POQ與△AOB相似.
點評:本題主要考查了直角三角形的性質(zhì)、圖形的翻折變換、相似三角形的判定和性質(zhì)等知識點.要注意(3)題要根據(jù)不同的相似三角形分類進行討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案