【題目】如圖,△ABC中,∠ABC=90°,AB=2,BC=4,現(xiàn)將△ABC繞頂點(diǎn)B順時針方向旋轉(zhuǎn)△A′BC′的位置,此時A′C′與BC的交點(diǎn)D是BC的中點(diǎn),則線段C′D的長度是(
A.
B.
C.
D.2

【答案】B
【解析】解:過點(diǎn)B作BM⊥A′C′,交A′C′于點(diǎn)M,如圖所示:
∵∠ABC=90°,AB=2,BC=4,
∴AC= = =2 ,cosA= = = ,
由題意得:∠A′=∠A,A′B=AB=2,A′C′=AC=2 ,
∵點(diǎn)D為BC的中點(diǎn),
∴BD= BC=2,BD=A′B,而BM⊥A′C′,
∴A′M=DM,
∵cosA′=cosA,且cosA′= ,
∴A′M= ×2= ,
∴C'D=A'C'﹣2A'M=2 ﹣2× = ,
所以答案是:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對旋轉(zhuǎn)的性質(zhì)的理解,了解①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:( )÷ ,其中x的值從不等式組 的整數(shù)解中選。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于數(shù)軸上的點(diǎn)PQ,給出如下定義:若點(diǎn)P到點(diǎn)Q的距離為d(d≥0),則稱d為點(diǎn)P到點(diǎn)Qd追隨值,記作d[PQ].例如,在數(shù)軸上點(diǎn)P表示的數(shù)是2,點(diǎn)Q表示的數(shù)是5,則點(diǎn)P到點(diǎn)Qd追隨值為d[PQ]=3

問題解決:

(1)點(diǎn)M,N都在數(shù)軸上,點(diǎn)M表示的數(shù)是1,且點(diǎn)N到點(diǎn)Md追隨值d[MN]=a(a≥0),則點(diǎn)N表示的數(shù)是_____(用含a的代數(shù)式表示);

(2)如圖,點(diǎn)C表示的數(shù)是1,在數(shù)軸上有兩個動點(diǎn)A,B都沿著正方向同時移動,其中A點(diǎn)的速度為每秒3個單位,B點(diǎn)的速度為每秒1個單位,點(diǎn)A從點(diǎn)C出發(fā),點(diǎn)B表示的數(shù)是b,設(shè)運(yùn)動時間為t(t>0)

①當(dāng)b=4時,問t為何值時,點(diǎn)A到點(diǎn)Bd追隨值d[AB]=2;

②若0<t≤3時,點(diǎn)A到點(diǎn)Bd追隨值d[AB]≤6,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小敏在測量學(xué)校一幢教學(xué)樓AB的高度時,她先在點(diǎn)C測得教學(xué)樓的頂部A的仰角為30°,然后向教學(xué)樓前進(jìn)12米到達(dá)點(diǎn)D,又測得點(diǎn)A的仰角為45°.請你根據(jù)這些數(shù)據(jù),求出這幢教學(xué)樓AB的高度.
(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為2,AB,CD是互相垂直的兩條直徑,點(diǎn)P是⊙O上任意一點(diǎn)(P與A,B,C,D不重合),過點(diǎn)P作PM⊥AB于點(diǎn)M,PN⊥CD于點(diǎn)N,點(diǎn)Q是MN的中點(diǎn),當(dāng)點(diǎn)P沿著圓周轉(zhuǎn)過45°時,線段OQ所掃過過的面積為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖是用4個全等的長方形拼成的一個“回形”正方形,圖中陰影部分面積用2種方法表示可得一個等式,這個等式為_______

(2)(4xy)2=9,(4x+y)2=169,求xy的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:我們都知道,

于是,-2x2+40x+5

=-2(x2-20x)+5

=-2(x2-20x+100)+200+5

=-2(x-10)2+205

又因?yàn)?/span>,所以

所以,-2x2+40x+5有最大值205.

如圖,某農(nóng)戶準(zhǔn)備用長34米的鐵柵欄圍成一邊靠墻的長方形羊圈ABCD和一個邊長為1米的正方形狗屋CEFG.設(shè)AB=x.

(1)請用含x的代數(shù)式表示BC的長(直接寫答案);

(2)設(shè)山羊活動范圍即圖中陰影部分的面積為S,試用含x的代數(shù)式表示S,并計(jì)算當(dāng)x=5時S的值;

(3)試求出山羊活動范圍面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD和四邊形DEFG都是正方形,點(diǎn)E,G分別在AD,CD上,連接AF,BF,CF
(1)求證:AF=CF;
(2)若∠BAF=35°,求∠BFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學(xué)校準(zhǔn)備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.

(1)求足球和籃球的單價各是多少元?

(2)根據(jù)學(xué)校實(shí)際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費(fèi)用不超過1550元,學(xué)校最多可以購買多少個足球?

查看答案和解析>>

同步練習(xí)冊答案